mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 05:48:47 +01:00
563cdc391d
* Support calling mlock() on loaded model data on Linux and macOS This is enabled by a new --mlock command line option. Using mlock() disables swapping and memory compression for the model data. Doing so can be useful on systems where the model takes up a large fraction of system RAM. In my experience, macOS is quite eager to start compressing llama.cpp's memory, which then makes it halt for a few seconds while it decompresses, even with a model that uses "only" 25GB out of 32GB. Of course, this comes at the cost of forcing the system to swap or compress other processes' memory instead, so it needs to be used with care and shouldn't be enabled by default. In theory it should be possible to support this on Windows as well using VirtualLock(), but I'm not much of a Windows user. * Update llama.cpp --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
774 lines
22 KiB
C
774 lines
22 KiB
C
#pragma once
|
|
|
|
//
|
|
// GGML Tensor Library
|
|
//
|
|
// This documentation is still a work in progress.
|
|
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
//
|
|
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
//
|
|
// ## Overview
|
|
//
|
|
// This library implements:
|
|
//
|
|
// - a set of tensor operations
|
|
// - automatic differentiation
|
|
// - basic optimization algorithms
|
|
//
|
|
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
// but is not limited to, the following:
|
|
//
|
|
// - linear regression
|
|
// - support vector machines
|
|
// - neural networks
|
|
//
|
|
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
// using one of the available optimization algorithms.
|
|
//
|
|
// For example, here we define the function: f(x) = a*x^2 + b
|
|
//
|
|
// {
|
|
// struct ggml_init_params params = {
|
|
// .mem_size = 16*1024*1024,
|
|
// .mem_buffer = NULL,
|
|
// };
|
|
//
|
|
// // memory allocation happens here
|
|
// struct ggml_context * ctx = ggml_init(params);
|
|
//
|
|
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
//
|
|
// ggml_set_param(ctx, x); // x is an input variable
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
|
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
//
|
|
// {
|
|
// ...
|
|
//
|
|
// struct ggml_cgraph gf = ggml_build_forward(f);
|
|
//
|
|
// // set the input variable and parameter values
|
|
// ggml_set_f32(x, 2.0f);
|
|
// ggml_set_f32(a, 3.0f);
|
|
// ggml_set_f32(b, 4.0f);
|
|
//
|
|
// ggml_graph_compute(ctx0, &gf);
|
|
//
|
|
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// The actual computation is performed in the ggml_graph_compute() function.
|
|
//
|
|
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
|
// actually needed.
|
|
//
|
|
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
// differentiation and optimization algorithms.
|
|
//
|
|
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
|
// the user can avoid the memory allocation overhead at runtime.
|
|
//
|
|
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
//
|
|
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
// yet, but a few examples are demonstrated in the following operations:
|
|
//
|
|
// - ggml_permute()
|
|
// - ggml_conv_1d_1s()
|
|
// - ggml_conv_1d_2s()
|
|
//
|
|
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
// calculus class, or watch the following video:
|
|
//
|
|
// What is Automatic Differentiation?
|
|
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
//
|
|
//
|
|
// ## Tensor data (struct ggml_tensor)
|
|
//
|
|
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
|
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
|
//
|
|
// assert(c->src[0] == a);
|
|
// assert(c->src[1] == b);
|
|
// }
|
|
//
|
|
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
|
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
// contiguous in memory.
|
|
//
|
|
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
|
//
|
|
// // a[1, 2] = 1.0f;
|
|
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
|
//
|
|
// // a[2, 0] = 2.0f;
|
|
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
|
//
|
|
// ## The matrix multiplication operator (ggml_mul_mat)
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Multi-threading
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Overview of ggml.c
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## SIMD optimizations
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Debugging ggml
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
|
|
#define GGML_MAX_DIMS 4
|
|
#define GGML_MAX_NODES 4096
|
|
#define GGML_MAX_PARAMS 16
|
|
#define GGML_MAX_CONTEXTS 64
|
|
#define GGML_MAX_OPT 4
|
|
|
|
#ifdef __ARM_NEON
|
|
// we use the built-in 16-bit float type
|
|
typedef __fp16 ggml_fp16_t;
|
|
#else
|
|
typedef uint16_t ggml_fp16_t;
|
|
#endif
|
|
|
|
// convert FP16 <-> FP32
|
|
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
|
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
|
|
|
struct ggml_object;
|
|
struct ggml_context;
|
|
|
|
enum ggml_type {
|
|
GGML_TYPE_Q4_0,
|
|
GGML_TYPE_Q4_1,
|
|
GGML_TYPE_I8,
|
|
GGML_TYPE_I16,
|
|
GGML_TYPE_I32,
|
|
GGML_TYPE_F16,
|
|
GGML_TYPE_F32,
|
|
GGML_TYPE_COUNT,
|
|
};
|
|
|
|
// available tensor operations:
|
|
enum ggml_op {
|
|
GGML_OP_NONE = 0,
|
|
|
|
GGML_OP_DUP,
|
|
GGML_OP_ADD,
|
|
GGML_OP_SUB,
|
|
GGML_OP_MUL,
|
|
GGML_OP_DIV,
|
|
GGML_OP_SQR,
|
|
GGML_OP_SQRT,
|
|
GGML_OP_SUM,
|
|
GGML_OP_MEAN,
|
|
GGML_OP_REPEAT,
|
|
GGML_OP_ABS,
|
|
GGML_OP_SGN,
|
|
GGML_OP_NEG,
|
|
GGML_OP_STEP,
|
|
GGML_OP_RELU,
|
|
GGML_OP_GELU,
|
|
GGML_OP_SILU,
|
|
GGML_OP_NORM, // normalize
|
|
GGML_OP_RMS_NORM,
|
|
|
|
GGML_OP_MUL_MAT,
|
|
|
|
GGML_OP_SCALE,
|
|
GGML_OP_CPY,
|
|
GGML_OP_RESHAPE,
|
|
GGML_OP_VIEW,
|
|
GGML_OP_PERMUTE,
|
|
GGML_OP_TRANSPOSE,
|
|
GGML_OP_GET_ROWS,
|
|
GGML_OP_DIAG_MASK_INF,
|
|
GGML_OP_SOFT_MAX,
|
|
GGML_OP_ROPE,
|
|
GGML_OP_CONV_1D_1S,
|
|
GGML_OP_CONV_1D_2S,
|
|
|
|
GGML_OP_FLASH_ATTN,
|
|
GGML_OP_FLASH_FF,
|
|
|
|
GGML_OP_COUNT,
|
|
};
|
|
|
|
// n-dimensional tensor
|
|
struct ggml_tensor {
|
|
enum ggml_type type;
|
|
|
|
int n_dims;
|
|
int ne[GGML_MAX_DIMS]; // number of elements
|
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
// nb[0] = sizeof(type)
|
|
// nb[1] = nb[0] * ne[0] + padding
|
|
// nb[i] = nb[i-1] * ne[i-1]
|
|
|
|
// compute data
|
|
enum ggml_op op;
|
|
|
|
bool is_param;
|
|
|
|
struct ggml_tensor * grad;
|
|
struct ggml_tensor * src0;
|
|
struct ggml_tensor * src1;
|
|
struct ggml_tensor * opt[GGML_MAX_OPT];
|
|
|
|
// thread scheduling
|
|
int n_tasks;
|
|
|
|
// performance
|
|
int perf_runs;
|
|
int64_t perf_cycles;
|
|
int64_t perf_time_us;
|
|
|
|
void * data;
|
|
char padding[8];
|
|
};
|
|
|
|
// computation graph
|
|
struct ggml_cgraph {
|
|
int n_nodes;
|
|
int n_leafs;
|
|
int n_threads;
|
|
|
|
size_t work_size;
|
|
struct ggml_tensor * work;
|
|
|
|
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
|
struct ggml_tensor * grads[GGML_MAX_NODES];
|
|
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
|
|
|
// performance
|
|
int perf_runs;
|
|
int64_t perf_cycles;
|
|
int64_t perf_time_us;
|
|
};
|
|
|
|
// scratch buffer
|
|
struct ggml_scratch {
|
|
size_t offs;
|
|
size_t size;
|
|
void * data;
|
|
};
|
|
|
|
struct ggml_init_params {
|
|
// memory pool
|
|
size_t mem_size; // bytes
|
|
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
};
|
|
|
|
void ggml_time_init(void); // call this once at the beginning of the program
|
|
int64_t ggml_time_ms(void);
|
|
int64_t ggml_time_us(void);
|
|
int64_t ggml_cycles(void);
|
|
int64_t ggml_cycles_per_ms(void);
|
|
|
|
void ggml_print_object (const struct ggml_object * obj);
|
|
void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
|
int ggml_nelements(const struct ggml_tensor * tensor);
|
|
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
|
|
int ggml_blck_size (enum ggml_type type);
|
|
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
|
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
|
|
|
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
|
struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
void ggml_free(struct ggml_context * ctx);
|
|
|
|
size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
|
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
|
|
bool ggml_mlock_supported(void);
|
|
bool ggml_mlock(struct ggml_context * ctx, char ** err_p);
|
|
|
|
struct ggml_tensor * ggml_new_tensor(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int *ne);
|
|
|
|
struct ggml_tensor * ggml_new_tensor_1d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int ne0);
|
|
|
|
struct ggml_tensor * ggml_new_tensor_2d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int ne0,
|
|
int ne1);
|
|
|
|
struct ggml_tensor * ggml_new_tensor_3d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int ne0,
|
|
int ne1,
|
|
int ne2);
|
|
|
|
struct ggml_tensor * ggml_new_tensor_4d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int ne0,
|
|
int ne1,
|
|
int ne2,
|
|
int ne3);
|
|
|
|
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
|
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
|
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
|
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
|
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
|
void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
|
//
|
|
// operations on tensors with backpropagation
|
|
//
|
|
|
|
struct ggml_tensor * ggml_dup(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_add(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_sub(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_mul(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_div(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_sqr(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_sqrt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return scalar
|
|
// TODO: compute sum along rows
|
|
struct ggml_tensor * ggml_sum(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// mean along rows
|
|
struct ggml_tensor * ggml_mean(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// if a is the same shape as b, and a is not parameter, return a
|
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
struct ggml_tensor * ggml_repeat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_abs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_sgn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_neg(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_step(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// TODO: double-check this computation is correct
|
|
struct ggml_tensor * ggml_gelu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_silu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// normalize along rows
|
|
// TODO: eps is hardcoded to 1e-5 for now
|
|
struct ggml_tensor * ggml_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_rms_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// A: m rows, n columns
|
|
// B: p rows, n columns (i.e. we transpose it internally)
|
|
// result is m columns, p rows
|
|
struct ggml_tensor * ggml_mul_mat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
//
|
|
// operations on tensors without backpropagation
|
|
//
|
|
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_scale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// a -> b, return view(b)
|
|
struct ggml_tensor * ggml_cpy(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// return view(a), b specifies the new shape
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
struct ggml_tensor * ggml_reshape(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
struct ggml_tensor * ggml_reshape_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int ne0,
|
|
int ne1);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
struct ggml_tensor * ggml_reshape_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int ne0,
|
|
int ne1,
|
|
int ne2);
|
|
|
|
// offset in bytes
|
|
struct ggml_tensor * ggml_view_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int ne0,
|
|
size_t offset);
|
|
|
|
struct ggml_tensor * ggml_view_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int ne0,
|
|
int ne1,
|
|
size_t nb1, // row stride in bytes
|
|
size_t offset);
|
|
|
|
struct ggml_tensor * ggml_permute(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int axis0,
|
|
int axis1,
|
|
int axis2,
|
|
int axis3);
|
|
|
|
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
struct ggml_tensor * ggml_transpose(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
struct ggml_tensor * ggml_get_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// set elements above the diagonal to -INF
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_diag_mask_inf(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_soft_max(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// rotary position embedding
|
|
// in-place, returns view(a)
|
|
// if mode == 1, skip n_past elements
|
|
// TODO: avoid creating a new tensor every time
|
|
struct ggml_tensor * ggml_rope(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// padding = 1
|
|
// TODO: we don't support extra parameters for now
|
|
// that's why we are hard-coding the stride, padding, and dilation
|
|
// not great ..
|
|
struct ggml_tensor * ggml_conv_1d_1s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_conv_1d_2s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
struct ggml_tensor * ggml_flash_attn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
bool masked);
|
|
|
|
struct ggml_tensor * ggml_flash_ff(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b0,
|
|
struct ggml_tensor * b1,
|
|
struct ggml_tensor * c0,
|
|
struct ggml_tensor * c1);
|
|
|
|
//
|
|
// automatic differentiation
|
|
//
|
|
|
|
void ggml_set_param(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * tensor);
|
|
|
|
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
|
|
struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
|
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
|
|
|
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
|
|
|
// print info and performance information for the graph
|
|
void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
|
// dump the graph into a file using the dot format
|
|
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
|
//
|
|
// optimization
|
|
//
|
|
|
|
// optimization methods
|
|
enum ggml_opt_type {
|
|
GGML_OPT_ADAM,
|
|
GGML_OPT_LBFGS,
|
|
};
|
|
|
|
// linesearch methods
|
|
enum ggml_linesearch {
|
|
GGML_LINESEARCH_DEFAULT = 1,
|
|
|
|
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
};
|
|
|
|
// optimization return values
|
|
enum ggml_opt_result {
|
|
GGML_OPT_OK = 0,
|
|
GGML_OPT_DID_NOT_CONVERGE,
|
|
GGML_OPT_NO_CONTEXT,
|
|
GGML_OPT_INVALID_WOLFE,
|
|
GGML_OPT_FAIL,
|
|
|
|
GGML_LINESEARCH_FAIL = -128,
|
|
GGML_LINESEARCH_MINIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
};
|
|
|
|
// optimization parameters
|
|
//
|
|
// see ggml.c (ggml_opt_default_params) for default values
|
|
//
|
|
struct ggml_opt_params {
|
|
enum ggml_opt_type type;
|
|
|
|
int n_threads;
|
|
|
|
// delta-based convergence test
|
|
//
|
|
// if past == 0 - disabled
|
|
// if past > 0:
|
|
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
//
|
|
int past;
|
|
float delta;
|
|
|
|
// maximum number of iterations without improvement
|
|
//
|
|
// if 0 - disabled
|
|
// if > 0:
|
|
// assume convergence if no cost improvement in this number of iterations
|
|
//
|
|
int max_no_improvement;
|
|
|
|
bool print_forward_graph;
|
|
bool print_backward_graph;
|
|
|
|
// ADAM parameters
|
|
struct {
|
|
int n_iter;
|
|
|
|
float alpha; // learning rate
|
|
float beta1;
|
|
float beta2;
|
|
float eps; // epsilon for numerical stability
|
|
float eps_f; // epsilon for convergence test
|
|
float eps_g; // epsilon for convergence test
|
|
} adam;
|
|
|
|
// LBFGS parameters
|
|
struct {
|
|
int m; // number of corrections to approximate the inv. Hessian
|
|
int n_iter;
|
|
int max_linesearch;
|
|
|
|
float eps; // convergence tolerance
|
|
float ftol; // line search tolerance
|
|
float wolfe;
|
|
float min_step;
|
|
float max_step;
|
|
|
|
enum ggml_linesearch linesearch;
|
|
} lbfgs;
|
|
};
|
|
|
|
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
|
// optimize the function defined by the tensor f
|
|
enum ggml_opt_result ggml_opt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f);
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
|
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
|
|
|
//
|
|
// system info
|
|
//
|
|
|
|
int ggml_cpu_has_avx(void);
|
|
int ggml_cpu_has_avx2(void);
|
|
int ggml_cpu_has_avx512(void);
|
|
int ggml_cpu_has_fma(void);
|
|
int ggml_cpu_has_neon(void);
|
|
int ggml_cpu_has_arm_fma(void);
|
|
int ggml_cpu_has_f16c(void);
|
|
int ggml_cpu_has_fp16_va(void);
|
|
int ggml_cpu_has_wasm_simd(void);
|
|
int ggml_cpu_has_blas(void);
|
|
int ggml_cpu_has_sse3(void);
|
|
int ggml_cpu_has_vsx(void);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|