mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-30 06:30:15 +01:00
e32089b2c2
* add python wrapper https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce * fix decoding error. adds errors=ignore parameter * add python bindings for functions to get and set the whole llama state (rng, logits, embedding and kv_cache) * update python bindings * add text generating baby-llama from scratch example * fix race condition bug in ggml_compute_forward_diag_mask_f32 * implement ggml_soft_max_back for more performant backward pass of soft_max avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss * improve softmax backward pass go from quadratic runtime to linear runtime by simplifying the formulas * fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 memcpy needs to be synchronized across threads to avoid race conditions. => do it in INIT phase * fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build * improve performance of mul_mat backward pass avoid transpose by using mul_mat with swapped arguments * avoid printing too much newlines in baby-llama-text * activate threading in baby-llama-text * add ggml_out_prod and use it for mul_mat backward pass for improved performance performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests * better weight initialization improves training convergence at start * better weight initialization improves training convergence at start * improve ggml_out_prod performance - change iteration order (>15s -> 10s runtime) - parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime) * add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data * fix get_samples call, add model tensor names, increase model size, start training samples after newline * save train trained model to checkpoint and load model to be trained from checkpoint * use inplace functions where possible * initialize rng with srand * use different arguments for input and output checkpoint * ggml fixes to support backward pass on inplace operations * remove duplicate include * fix cross entropy loss - add target probabilities for each sample which is then used in cross entropy loss * print used memory before and after optimization * sample with non-greedy sampling parameters at the end of training * add cmake target for baby-llama-text * add ggml_add1_inplace to header * enable gradient propagation for inplace add1 and scale operations those functions backward passes don't need the original src0, so they also work when forward is inplace * implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f) also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule. setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer. since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer. * use inplace operations in cross_entropy_loss * fix random weight initialization scale * add missing default parameters for adam optimizer * add ggml_opt_context, so that we can properly resume training otherwise the optimizer states, tracking statistics about the error function and its derivates, will reset to zero each time ggml_opt is called, hindering convergence on resumed training. now the optimizer context and all its memory is stored in a separate struct. * fix bug in llama_sample_token_mirostat_v2 when all candidates are filtered out through mu threshold, the following soft_max operation will fail. so keep at least one. * add forward function without using cache, for more performant training during training on whole samples no cache is required. removing the cache and simplifying the remaining code results in performance and memory usage improvement. * print suppressed newline tokens as string "\n" printing too much actual newlines is suppressed to avoid flooding the console. * store optimizer state in training checkpoint and add learning schedule persistent optimizer state allows to resume training without resetting the optimizer learning schedule consists of linear warmup ramp followed by cosine decay with restarts * remove unused functions * fix bug in get_samples which corrupted training targets * save checkpoint only when it was trained * simplify code * remove trailing whitespace * simplify backward pass for SQRT * replace inefficient repeat backward pass with dedicated repeat_back operation * add ggml_cross_entropy_loss with backward pass for faster training cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead. * add tests for cross_entropy_loss backward pass finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient. _probably_ the finite differences fails due to numerical issues * use ggml_cross_entropy_loss in text training example * remove trailing whitespace * slightly improve how cross entropy loss is compute btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log. probably the input to log gets closer to zero due to float numerics. maybe the multiplication by (1.0-eps)/sum is more accurate.. * add llama_get_vocab to get the vocabulary as output parameters * set default model.type for unknown models with few layers * add export of training checkpoint to llama compatible model file * get vocabulary for exporting training checkpoint to llama compatible model file * implement backward pass of flash attention * bugfixes for backward pass of flash attention * test flash attention backward pass need to set loose error bounds to pass. the finitie differences are close to numeric limits and often return quite different values than the backward pass. reducing eps further lets the gradients vanish completely. likewise setting eps to big results in wronger values. the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences. * add option to train with flash attention and move options to the top of the main function training from scratch also works with flash attention training convergence and generation results after fix number of iterations are worse than when not using flash attention. maybe there still lingers a bug in the flash attention backward pass? but training works, just with slower convergence. flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx * add train_params and command line option parser * remove unnecessary comments * add train params to specify memory size * remove python bindings * rename baby-llama-text to train-text-from-scratch * replace auto parameters in lambda function * add #include <climits> * add explicit cast to fix compile error "error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]" * remove trailing whitespace * add ggml_opt_resume_g which accepts forward and backward cgraphs * fix formulas in comments * bug fix for ggml_compute_forward_get_rows_back_f32 the result should be set to zero, not to whatever data is in opt0 * improve training memory usage with scratch buffers instead of relying on the automatic backward pass, we manually create the graph for the backward pass. it turns out that all backward pass operations need only temporary memory which can be reused after each layer. will compute backward pass for ALL model parameters * add option to use scratch buffers in training or not make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters. * ci : disable temporary * store view offset and permute axes in opt[0] instead of storing it in padding use memcpy to store offset, because offset is of type size_t. when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true. * minor : fix compile warnings + minor style changes * fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32 * store view offset like in master branch * bug fix in forward_batch_wo_cache_flash_attn_train * scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train data of permute and reshape is the same as their input. if we want to preserve the output of permute/reshape, we also need to preserve their inputs. replace reshape(src0, src1) with reshape_nd calls so that we don't need src1. replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02). in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls. for this we need backward pass of broadcasting ggml_mul. * remove unnecessary scratch buffer 0 buf 0 is persistent memory, so we can just disable scratch for this by using buf -1 * avoid creating unnecessary grad tensors previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads this wasted memory, because unnecessary grad for each op were automatically created: the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ). this discarded the automatically generated grad resulting in wasted memory. improved this by changing expand(..) to not use ggml_build_forward_expand. expand set cgraph->nodes but not the leafs. cgraph->leafs & cgraph->grads are set in another pass after the last expand call. * print used training seed * zero initialize gfbuf and gbbuf * ci : re-enable workflows + add README for training --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1319 lines
44 KiB
C
1319 lines
44 KiB
C
#pragma once
|
|
|
|
//
|
|
// GGML Tensor Library
|
|
//
|
|
// This documentation is still a work in progress.
|
|
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
//
|
|
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
//
|
|
// ## Overview
|
|
//
|
|
// This library implements:
|
|
//
|
|
// - a set of tensor operations
|
|
// - automatic differentiation
|
|
// - basic optimization algorithms
|
|
//
|
|
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
// but is not limited to, the following:
|
|
//
|
|
// - linear regression
|
|
// - support vector machines
|
|
// - neural networks
|
|
//
|
|
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
// using one of the available optimization algorithms.
|
|
//
|
|
// For example, here we define the function: f(x) = a*x^2 + b
|
|
//
|
|
// {
|
|
// struct ggml_init_params params = {
|
|
// .mem_size = 16*1024*1024,
|
|
// .mem_buffer = NULL,
|
|
// };
|
|
//
|
|
// // memory allocation happens here
|
|
// struct ggml_context * ctx = ggml_init(params);
|
|
//
|
|
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
//
|
|
// ggml_set_param(ctx, x); // x is an input variable
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
|
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
//
|
|
// {
|
|
// ...
|
|
//
|
|
// struct ggml_cgraph gf = ggml_build_forward(f);
|
|
//
|
|
// // set the input variable and parameter values
|
|
// ggml_set_f32(x, 2.0f);
|
|
// ggml_set_f32(a, 3.0f);
|
|
// ggml_set_f32(b, 4.0f);
|
|
//
|
|
// ggml_graph_compute(ctx0, &gf);
|
|
//
|
|
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// The actual computation is performed in the ggml_graph_compute() function.
|
|
//
|
|
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
|
// actually needed.
|
|
//
|
|
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
// differentiation and optimization algorithms.
|
|
//
|
|
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
|
// the user can avoid the memory allocation overhead at runtime.
|
|
//
|
|
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
//
|
|
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
// yet, but a few examples are demonstrated in the following operations:
|
|
//
|
|
// - ggml_permute()
|
|
// - ggml_conv_1d_1s()
|
|
// - ggml_conv_1d_2s()
|
|
//
|
|
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
// calculus class, or watch the following video:
|
|
//
|
|
// What is Automatic Differentiation?
|
|
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
//
|
|
//
|
|
// ## Tensor data (struct ggml_tensor)
|
|
//
|
|
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
|
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
|
//
|
|
// assert(c->src[0] == a);
|
|
// assert(c->src[1] == b);
|
|
// }
|
|
//
|
|
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
|
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
// contiguous in memory.
|
|
//
|
|
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
|
//
|
|
// // a[1, 2] = 1.0f;
|
|
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
|
//
|
|
// // a[2, 0] = 2.0f;
|
|
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
|
//
|
|
// ## The matrix multiplication operator (ggml_mul_mat)
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Multi-threading
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Overview of ggml.c
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## SIMD optimizations
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Debugging ggml
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
|
|
#ifdef GGML_SHARED
|
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
# ifdef GGML_BUILD
|
|
# define GGML_API __declspec(dllexport)
|
|
# else
|
|
# define GGML_API __declspec(dllimport)
|
|
# endif
|
|
# else
|
|
# define GGML_API __attribute__ ((visibility ("default")))
|
|
# endif
|
|
#else
|
|
# define GGML_API
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
|
|
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
|
#define GGML_FILE_VERSION 1
|
|
|
|
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
|
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
|
|
|
#define GGML_MAX_DIMS 4
|
|
#define GGML_MAX_NODES 4096
|
|
#define GGML_MAX_PARAMS 256
|
|
#define GGML_MAX_CONTEXTS 64
|
|
#define GGML_MAX_OPT 4
|
|
#define GGML_MAX_NAME 32
|
|
#define GGML_DEFAULT_N_THREADS 4
|
|
|
|
#define GGML_ASSERT(x) \
|
|
do { \
|
|
if (!(x)) { \
|
|
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
|
abort(); \
|
|
} \
|
|
} while (0)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifdef __ARM_NEON
|
|
// we use the built-in 16-bit float type
|
|
typedef __fp16 ggml_fp16_t;
|
|
#else
|
|
typedef uint16_t ggml_fp16_t;
|
|
#endif
|
|
|
|
// convert FP16 <-> FP32
|
|
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
|
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
|
|
|
|
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
|
|
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
|
|
|
|
struct ggml_object;
|
|
struct ggml_context;
|
|
|
|
enum ggml_type {
|
|
GGML_TYPE_F32 = 0,
|
|
GGML_TYPE_F16 = 1,
|
|
GGML_TYPE_Q4_0 = 2,
|
|
GGML_TYPE_Q4_1 = 3,
|
|
// GGML_TYPE_Q4_2 = 4, support has been removed
|
|
// GGML_TYPE_Q4_3 (5) support has been removed
|
|
GGML_TYPE_Q5_0 = 6,
|
|
GGML_TYPE_Q5_1 = 7,
|
|
GGML_TYPE_Q8_0 = 8,
|
|
GGML_TYPE_Q8_1 = 9,
|
|
// k-quantizations
|
|
GGML_TYPE_Q2_K = 10,
|
|
GGML_TYPE_Q3_K = 11,
|
|
GGML_TYPE_Q4_K = 12,
|
|
GGML_TYPE_Q5_K = 13,
|
|
GGML_TYPE_Q6_K = 14,
|
|
GGML_TYPE_Q8_K = 15,
|
|
GGML_TYPE_I8,
|
|
GGML_TYPE_I16,
|
|
GGML_TYPE_I32,
|
|
GGML_TYPE_COUNT,
|
|
};
|
|
|
|
enum ggml_backend {
|
|
GGML_BACKEND_CPU = 0,
|
|
GGML_BACKEND_GPU = 10,
|
|
GGML_BACKEND_GPU_SPLIT = 20,
|
|
};
|
|
|
|
// model file types
|
|
enum ggml_ftype {
|
|
GGML_FTYPE_UNKNOWN = -1,
|
|
GGML_FTYPE_ALL_F32 = 0,
|
|
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
|
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
|
};
|
|
|
|
// available tensor operations:
|
|
enum ggml_op {
|
|
GGML_OP_NONE = 0,
|
|
|
|
GGML_OP_DUP,
|
|
GGML_OP_ADD,
|
|
GGML_OP_ADD1,
|
|
GGML_OP_ACC,
|
|
GGML_OP_SUB,
|
|
GGML_OP_MUL,
|
|
GGML_OP_DIV,
|
|
GGML_OP_SQR,
|
|
GGML_OP_SQRT,
|
|
GGML_OP_LOG,
|
|
GGML_OP_SUM,
|
|
GGML_OP_SUM_ROWS,
|
|
GGML_OP_MEAN,
|
|
GGML_OP_REPEAT,
|
|
GGML_OP_REPEAT_BACK,
|
|
GGML_OP_ABS,
|
|
GGML_OP_SGN,
|
|
GGML_OP_NEG,
|
|
GGML_OP_STEP,
|
|
GGML_OP_RELU,
|
|
GGML_OP_GELU,
|
|
GGML_OP_SILU,
|
|
GGML_OP_SILU_BACK,
|
|
GGML_OP_NORM, // normalize
|
|
GGML_OP_RMS_NORM,
|
|
GGML_OP_RMS_NORM_BACK,
|
|
|
|
GGML_OP_MUL_MAT,
|
|
GGML_OP_OUT_PROD,
|
|
|
|
GGML_OP_SCALE,
|
|
GGML_OP_SET,
|
|
GGML_OP_CPY,
|
|
GGML_OP_CONT,
|
|
GGML_OP_RESHAPE,
|
|
GGML_OP_VIEW,
|
|
GGML_OP_PERMUTE,
|
|
GGML_OP_TRANSPOSE,
|
|
GGML_OP_GET_ROWS,
|
|
GGML_OP_GET_ROWS_BACK,
|
|
GGML_OP_DIAG,
|
|
GGML_OP_DIAG_MASK_INF,
|
|
GGML_OP_DIAG_MASK_ZERO,
|
|
GGML_OP_SOFT_MAX,
|
|
GGML_OP_SOFT_MAX_BACK,
|
|
GGML_OP_ROPE,
|
|
GGML_OP_ROPE_BACK,
|
|
GGML_OP_ALIBI,
|
|
GGML_OP_CLAMP,
|
|
GGML_OP_CONV_1D_1S,
|
|
GGML_OP_CONV_1D_2S,
|
|
|
|
GGML_OP_FLASH_ATTN,
|
|
GGML_OP_FLASH_FF,
|
|
GGML_OP_FLASH_ATTN_BACK,
|
|
|
|
GGML_OP_MAP_UNARY,
|
|
GGML_OP_MAP_BINARY,
|
|
|
|
GGML_OP_CROSS_ENTROPY_LOSS,
|
|
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
|
|
|
GGML_OP_COUNT,
|
|
};
|
|
|
|
|
|
// ggml object
|
|
struct ggml_object {
|
|
size_t offs;
|
|
size_t size;
|
|
|
|
struct ggml_object * next;
|
|
|
|
char padding[8];
|
|
};
|
|
|
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
|
|
// n-dimensional tensor
|
|
struct ggml_tensor {
|
|
enum ggml_type type;
|
|
enum ggml_backend backend;
|
|
|
|
int n_dims;
|
|
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
// nb[0] = sizeof(type)
|
|
// nb[1] = nb[0] * ne[0] + padding
|
|
// nb[i] = nb[i-1] * ne[i-1]
|
|
|
|
// compute data
|
|
enum ggml_op op;
|
|
|
|
bool is_param;
|
|
|
|
struct ggml_tensor * grad;
|
|
struct ggml_tensor * src0;
|
|
struct ggml_tensor * src1;
|
|
struct ggml_tensor * opt[GGML_MAX_OPT];
|
|
|
|
// thread scheduling
|
|
int n_tasks;
|
|
|
|
// performance
|
|
int perf_runs;
|
|
int64_t perf_cycles;
|
|
int64_t perf_time_us;
|
|
|
|
void * data;
|
|
|
|
char name[GGML_MAX_NAME];
|
|
|
|
void * extra; // extra things e.g. for ggml-cuda.cu
|
|
|
|
char padding[4];
|
|
};
|
|
|
|
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
|
|
|
// computation graph
|
|
struct ggml_cgraph {
|
|
int n_nodes;
|
|
int n_leafs;
|
|
int n_threads;
|
|
|
|
size_t work_size;
|
|
struct ggml_tensor * work;
|
|
|
|
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
|
struct ggml_tensor * grads[GGML_MAX_NODES];
|
|
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
|
|
|
// performance
|
|
int perf_runs;
|
|
int64_t perf_cycles;
|
|
int64_t perf_time_us;
|
|
};
|
|
|
|
// scratch buffer
|
|
struct ggml_scratch {
|
|
size_t offs;
|
|
size_t size;
|
|
void * data;
|
|
};
|
|
|
|
struct ggml_init_params {
|
|
// memory pool
|
|
size_t mem_size; // bytes
|
|
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
bool no_alloc; // don't allocate memory for the tensor data
|
|
};
|
|
|
|
|
|
// compute types
|
|
enum ggml_task_type {
|
|
GGML_TASK_INIT = 0,
|
|
GGML_TASK_COMPUTE,
|
|
GGML_TASK_FINALIZE,
|
|
};
|
|
|
|
struct ggml_compute_params {
|
|
enum ggml_task_type type;
|
|
|
|
// ith = thread index, nth = number of threads
|
|
int ith, nth;
|
|
|
|
// work buffer for all threads
|
|
size_t wsize;
|
|
void * wdata;
|
|
};
|
|
|
|
// misc
|
|
|
|
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
|
GGML_API int64_t ggml_time_ms(void);
|
|
GGML_API int64_t ggml_time_us(void);
|
|
GGML_API int64_t ggml_cycles(void);
|
|
GGML_API int64_t ggml_cycles_per_ms(void);
|
|
|
|
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
|
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
|
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
|
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
|
|
|
|
GGML_API int ggml_blck_size (enum ggml_type type);
|
|
GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
|
GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
|
|
|
GGML_API const char * ggml_type_name(enum ggml_type type);
|
|
GGML_API const char * ggml_op_name (enum ggml_op op);
|
|
|
|
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
|
|
|
// TODO: temporary until model loading of ggml examples is refactored
|
|
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
|
|
|
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
|
|
|
// use this to compute the memory overhead of a tensor
|
|
GGML_API size_t ggml_tensor_overhead(void);
|
|
|
|
// main
|
|
|
|
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
GGML_API void ggml_free(struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
|
|
|
GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx);
|
|
GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int64_t *ne);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
|
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
|
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
|
|
GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
|
|
|
|
//
|
|
// operations on tensors with backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_acc(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_acc_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sub(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_mul(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_div(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqr(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqrt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return scalar
|
|
GGML_API struct ggml_tensor * ggml_sum(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
|
GGML_API struct ggml_tensor * ggml_sum_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// mean along rows
|
|
GGML_API struct ggml_tensor * ggml_mean(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// if a is the same shape as b, and a is not parameter, return a
|
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
GGML_API struct ggml_tensor * ggml_repeat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_repeat_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_abs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sgn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_neg(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_step(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// TODO: double-check this computation is correct
|
|
GGML_API struct ggml_tensor * ggml_gelu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_silu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_silu_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// normalize along rows
|
|
// TODO: eps is hardcoded to 1e-5 for now
|
|
GGML_API struct ggml_tensor * ggml_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rms_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// A: n columns, m rows
|
|
// B: n columns, p rows (i.e. we transpose it internally)
|
|
// result is m columns, p rows
|
|
GGML_API struct ggml_tensor * ggml_mul_mat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// A: m columns, n rows,
|
|
// B: p columns, n rows,
|
|
// result is m columns, p rows
|
|
GGML_API struct ggml_tensor * ggml_out_prod(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
//
|
|
// operations on tensors without backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_scale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset);
|
|
|
|
|
|
// a -> b, return view(b)
|
|
GGML_API struct ggml_tensor * ggml_cpy(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// make contiguous
|
|
GGML_API struct ggml_tensor * ggml_cont(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return view(a), b specifies the new shape
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
// offset in bytes
|
|
GGML_API struct ggml_tensor * ggml_view_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
size_t nb1, // row stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_permute(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int axis0,
|
|
int axis1,
|
|
int axis2,
|
|
int axis3);
|
|
|
|
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
GGML_API struct ggml_tensor * ggml_transpose(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
GGML_API struct ggml_tensor * ggml_diag(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// set elements above the diagonal to -INF
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// set elements above the diagonal to 0
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// rotary position embedding
|
|
// if mode & 1 == 1, skip n_past elements
|
|
// if mode & 2 == 1, GPT-NeoX style
|
|
// TODO: avoid creating a new tensor every time
|
|
GGML_API struct ggml_tensor * ggml_rope(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// rotary position embedding backward, i.e compute dx from dy
|
|
// a - dy
|
|
GGML_API struct ggml_tensor * ggml_rope_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// alibi position embedding
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_alibi(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_head,
|
|
float bias_max);
|
|
|
|
// clamp
|
|
// in-place, returns view(a)
|
|
struct ggml_tensor * ggml_clamp(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float min,
|
|
float max);
|
|
|
|
// padding = 1
|
|
// TODO: we don't support extra parameters for now
|
|
// that's why we are hard-coding the stride, padding, and dilation
|
|
// not great ..
|
|
GGML_API struct ggml_tensor * ggml_conv_1d_1s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_1d_2s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_flash_attn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
bool masked);
|
|
|
|
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * d,
|
|
bool masked);
|
|
|
|
GGML_API struct ggml_tensor * ggml_flash_ff(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b0,
|
|
struct ggml_tensor * b1,
|
|
struct ggml_tensor * c0,
|
|
struct ggml_tensor * c1);
|
|
|
|
// Mapping operations
|
|
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
|
|
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_unary_op_f32_t fun);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_binary_op_f32_t fun);
|
|
|
|
// loss function
|
|
|
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
//
|
|
// automatic differentiation
|
|
//
|
|
|
|
GGML_API void ggml_set_param(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * tensor);
|
|
|
|
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
|
|
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
|
|
|
GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
|
|
|
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
|
|
|
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
|
GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
|
|
|
// print info and performance information for the graph
|
|
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
|
// dump the graph into a file using the dot format
|
|
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
|
//
|
|
// optimization
|
|
//
|
|
|
|
// optimization methods
|
|
enum ggml_opt_type {
|
|
GGML_OPT_ADAM,
|
|
GGML_OPT_LBFGS,
|
|
};
|
|
|
|
// linesearch methods
|
|
enum ggml_linesearch {
|
|
GGML_LINESEARCH_DEFAULT = 1,
|
|
|
|
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
};
|
|
|
|
// optimization return values
|
|
enum ggml_opt_result {
|
|
GGML_OPT_OK = 0,
|
|
GGML_OPT_DID_NOT_CONVERGE,
|
|
GGML_OPT_NO_CONTEXT,
|
|
GGML_OPT_INVALID_WOLFE,
|
|
GGML_OPT_FAIL,
|
|
|
|
GGML_LINESEARCH_FAIL = -128,
|
|
GGML_LINESEARCH_MINIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
};
|
|
|
|
// optimization parameters
|
|
//
|
|
// see ggml.c (ggml_opt_default_params) for default values
|
|
//
|
|
struct ggml_opt_params {
|
|
enum ggml_opt_type type;
|
|
|
|
int n_threads;
|
|
|
|
// delta-based convergence test
|
|
//
|
|
// if past == 0 - disabled
|
|
// if past > 0:
|
|
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
//
|
|
int past;
|
|
float delta;
|
|
|
|
// maximum number of iterations without improvement
|
|
//
|
|
// if 0 - disabled
|
|
// if > 0:
|
|
// assume convergence if no cost improvement in this number of iterations
|
|
//
|
|
int max_no_improvement;
|
|
|
|
bool print_forward_graph;
|
|
bool print_backward_graph;
|
|
|
|
// ADAM parameters
|
|
struct {
|
|
int n_iter;
|
|
|
|
float sched; // schedule multiplier (fixed, decay or warmup)
|
|
float decay; // weight decay for AdamW, use 0.0f to disable
|
|
float alpha; // learning rate
|
|
float beta1;
|
|
float beta2;
|
|
float eps; // epsilon for numerical stability
|
|
float eps_f; // epsilon for convergence test
|
|
float eps_g; // epsilon for convergence test
|
|
} adam;
|
|
|
|
// LBFGS parameters
|
|
struct {
|
|
int m; // number of corrections to approximate the inv. Hessian
|
|
int n_iter;
|
|
int max_linesearch;
|
|
|
|
float eps; // convergence tolerance
|
|
float ftol; // line search tolerance
|
|
float wolfe;
|
|
float min_step;
|
|
float max_step;
|
|
|
|
enum ggml_linesearch linesearch;
|
|
} lbfgs;
|
|
};
|
|
|
|
struct ggml_opt_context {
|
|
struct ggml_context * ctx;
|
|
struct ggml_opt_params params;
|
|
|
|
int iter;
|
|
int64_t nx; // number of parameter elements
|
|
|
|
bool just_initialized;
|
|
|
|
struct {
|
|
struct ggml_tensor * x; // view of the parameters
|
|
struct ggml_tensor * g1; // gradient
|
|
struct ggml_tensor * g2; // gradient squared
|
|
struct ggml_tensor * m; // first moment
|
|
struct ggml_tensor * v; // second moment
|
|
struct ggml_tensor * mh; // first moment hat
|
|
struct ggml_tensor * vh; // second moment hat
|
|
struct ggml_tensor * pf; // past function values
|
|
float fx_best;
|
|
float fx_prev;
|
|
int n_no_improvement;
|
|
} adam;
|
|
|
|
struct {
|
|
struct ggml_tensor * x; // current parameters
|
|
struct ggml_tensor * xp; // previous parameters
|
|
struct ggml_tensor * g; // current gradient
|
|
struct ggml_tensor * gp; // previous gradient
|
|
struct ggml_tensor * d; // search direction
|
|
struct ggml_tensor * pf; // past function values
|
|
struct ggml_tensor * lmal; // the L-BFGS memory alpha
|
|
struct ggml_tensor * lmys; // the L-BFGS memory ys
|
|
struct ggml_tensor * lms; // the L-BFGS memory s
|
|
struct ggml_tensor * lmy; // the L-BFGS memory y
|
|
float fx_best;
|
|
float step;
|
|
int j;
|
|
int k;
|
|
int end;
|
|
int n_no_improvement;
|
|
} lbfgs;
|
|
};
|
|
|
|
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
|
// optimize the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f);
|
|
|
|
// initialize optimizer context
|
|
GGML_API void ggml_opt_init(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_opt_params params,
|
|
int64_t nx);
|
|
|
|
// continue optimizing the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt_resume(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f);
|
|
|
|
// continue optimizing the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt_resume_g(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb);
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
|
|
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
|
|
|
//
|
|
// system info
|
|
//
|
|
|
|
GGML_API int ggml_cpu_has_avx (void);
|
|
GGML_API int ggml_cpu_has_avx2 (void);
|
|
GGML_API int ggml_cpu_has_avx512 (void);
|
|
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
|
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
|
GGML_API int ggml_cpu_has_fma (void);
|
|
GGML_API int ggml_cpu_has_neon (void);
|
|
GGML_API int ggml_cpu_has_arm_fma (void);
|
|
GGML_API int ggml_cpu_has_f16c (void);
|
|
GGML_API int ggml_cpu_has_fp16_va (void);
|
|
GGML_API int ggml_cpu_has_wasm_simd (void);
|
|
GGML_API int ggml_cpu_has_blas (void);
|
|
GGML_API int ggml_cpu_has_cublas (void);
|
|
GGML_API int ggml_cpu_has_clblast (void);
|
|
GGML_API int ggml_cpu_has_gpublas (void);
|
|
GGML_API int ggml_cpu_has_sse3 (void);
|
|
GGML_API int ggml_cpu_has_vsx (void);
|
|
|
|
//
|
|
// Internal types and functions exposed for tests and benchmarks
|
|
//
|
|
|
|
#ifdef __cplusplus
|
|
// restrict not standard in C++
|
|
#define GGML_RESTRICT
|
|
#else
|
|
#define GGML_RESTRICT restrict
|
|
#endif
|
|
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
|
typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
|
typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
|
|
|
typedef struct {
|
|
dequantize_row_q_t dequantize_row_q;
|
|
quantize_row_q_t quantize_row_q;
|
|
quantize_row_q_t quantize_row_q_reference;
|
|
quantize_row_q_t quantize_row_q_dot;
|
|
vec_dot_q_t vec_dot_q;
|
|
enum ggml_type vec_dot_type;
|
|
} quantize_fns_t;
|
|
|
|
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|