mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 17:51:09 +01:00
141 lines
5.2 KiB
Python
Executable File
141 lines
5.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
|
|
import yaml
|
|
|
|
CLI_ARGS_MAIN_PERPLEXITY = [
|
|
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
|
|
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
|
|
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct",
|
|
"interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
|
|
"low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
|
|
"model", "mtest", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
|
|
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
|
|
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n",
|
|
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
|
|
"simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
|
|
"verbose-prompt"
|
|
]
|
|
|
|
CLI_ARGS_LLAMA_BENCH = [
|
|
"batch-size", "memory-f32", "low-vram", "model", "mul-mat-q", "n-gen", "n-gpu-layers",
|
|
"n-prompt", "output", "repetitions", "tensor-split", "threads", "verbose"
|
|
]
|
|
|
|
CLI_ARGS_SERVER = [
|
|
"alias", "batch-size", "ctx-size", "embedding", "host", "memory-f32", "lora", "lora-base",
|
|
"low-vram", "main-gpu", "mlock", "model", "n-gpu-layers", "n-probs", "no-mmap", "no-mul-mat-q",
|
|
"numa", "path", "port", "rope-freq-base", "timeout", "rope-freq-scale", "tensor-split",
|
|
"threads", "verbose"
|
|
]
|
|
|
|
description = """Run llama.cpp binaries with presets from YAML file(s).
|
|
To specify which binary should be run, specify the "binary" property (main, perplexity, llama-bench, and server are supported).
|
|
To get a preset file template, run a llama.cpp binary with the "--logdir" CLI argument.
|
|
|
|
Formatting considerations:
|
|
- The YAML property names are the same as the CLI argument names of the corresponding binary.
|
|
- Properties must use the long name of their corresponding llama.cpp CLI arguments.
|
|
- Like the llama.cpp binaries the property names do not differentiate between hyphens and underscores.
|
|
- Flags must be defined as "<PROPERTY_NAME>: true" to be effective.
|
|
- To define the logit_bias property, the expected format is "<TOKEN_ID>: <BIAS>" in the "logit_bias" namespace.
|
|
- To define multiple "reverse_prompt" properties simultaneously the expected format is a list of strings.
|
|
- To define a tensor split, pass a list of floats.
|
|
"""
|
|
usage = "run_with_preset.py [-h] [yaml_files ...] [--<ARG_NAME> <ARG_VALUE> ...]"
|
|
epilog = (" --<ARG_NAME> specify additional CLI ars to be passed to the binary (override all preset files). "
|
|
"Unknown args will be ignored.")
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter)
|
|
parser.add_argument("-bin", "--binary", help="The binary to run.")
|
|
parser.add_argument("yaml_files", nargs="*",
|
|
help="Arbitrary number of YAML files from which to read preset values. "
|
|
"If two files specify the same values the later one will be used.")
|
|
|
|
known_args, unknown_args = parser.parse_known_args()
|
|
|
|
if not known_args.yaml_files and not unknown_args:
|
|
parser.print_help()
|
|
sys.exit(0)
|
|
|
|
props = dict()
|
|
|
|
for yaml_file in known_args.yaml_files:
|
|
with open(yaml_file, "r") as f:
|
|
props.update(yaml.load(f, yaml.SafeLoader))
|
|
|
|
props = {prop.replace("_", "-"): val for prop, val in props.items()}
|
|
|
|
binary = props.pop("binary", "main")
|
|
if known_args.binary:
|
|
binary = known_args.binary
|
|
|
|
if os.path.exists(f"./{binary}"):
|
|
binary = f"./{binary}"
|
|
|
|
if binary.lower().endswith("main") or binary.lower().endswith("perplexity"):
|
|
cli_args = CLI_ARGS_MAIN_PERPLEXITY
|
|
elif binary.lower().endswith("llama-bench"):
|
|
cli_args = CLI_ARGS_LLAMA_BENCH
|
|
elif binary.lower().endswith("server"):
|
|
cli_args = CLI_ARGS_SERVER
|
|
else:
|
|
print(f"Unknown binary: {binary}")
|
|
sys.exit(1)
|
|
|
|
command_list = [binary]
|
|
|
|
for cli_arg in cli_args:
|
|
value = props.pop(cli_arg, None)
|
|
|
|
if not value or value == -1:
|
|
continue
|
|
|
|
if cli_arg == "logit-bias":
|
|
for token, bias in value.items():
|
|
command_list.append("--logit-bias")
|
|
command_list.append(f"{token}{bias:+}")
|
|
continue
|
|
|
|
if cli_arg == "reverse-prompt" and not isinstance(value, str):
|
|
for rp in value:
|
|
command_list.append("--reverse-prompt")
|
|
command_list.append(str(rp))
|
|
continue
|
|
|
|
command_list.append(f"--{cli_arg}")
|
|
|
|
if cli_arg == "tensor-split":
|
|
command_list.append(",".join([str(v) for v in value]))
|
|
continue
|
|
|
|
value = str(value)
|
|
|
|
if value != "True":
|
|
command_list.append(str(value))
|
|
|
|
num_unused = len(props)
|
|
if num_unused > 10:
|
|
print(f"The preset file contained a total of {num_unused} unused properties.")
|
|
elif num_unused > 0:
|
|
print("The preset file contained the following unused properties:")
|
|
for prop, value in props.items():
|
|
print(f" {prop}: {value}")
|
|
|
|
command_list += unknown_args
|
|
|
|
sp = subprocess.Popen(command_list)
|
|
|
|
while sp.returncode is None:
|
|
try:
|
|
sp.wait()
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
sys.exit(sp.returncode)
|