llama.cpp/ggml/src/ggml-blas.cpp
Diego Devesa c83ad6d01e
ggml-backend : add device and backend reg interfaces (#9707)
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-10-03 01:49:47 +02:00

367 lines
12 KiB
C++

#include "ggml-impl.h"
#include "ggml-blas.h"
#include "ggml-backend-impl.h"
#include <future>
#include <vector>
#if defined(GGML_USE_ACCELERATE)
# include <Accelerate/Accelerate.h>
#elif defined(GGML_BLAS_USE_MKL)
# include <mkl.h>
#elif defined(GGML_BLAS_USE_BLIS)
# include <blis.h>
#elif defined(GGML_BLAS_USE_NVPL)
# include <nvpl_blas.h>
#else
# include <cblas.h>
#endif
struct ggml_backend_blas_context {
int n_threads = GGML_DEFAULT_N_THREADS;
std::unique_ptr<char[]> work_data;
size_t work_size = 0;
#ifndef GGML_USE_OPENMP
std::vector<std::future<void>> tasks;
#endif
};
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
src1->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
}
return false;
}
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
const int64_t ne_plane = ne01*ne00;
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
if (ctx->work_size < desired_wsize) {
ctx->work_data.reset(new char[desired_wsize]);
ctx->work_size = desired_wsize;
}
void * wdata = ctx->work_data.get();
// convert src0 to float
if (type != GGML_TYPE_F32) {
ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
ggml_to_float_t const to_float = type_traits.to_float;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
const int min_cols_per_thread = 4096;
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
#ifdef GGML_USE_OPENMP
#pragma omp parallel for num_threads(n_threads)
for (int64_t i01 = 0; i01 < ne01; i01++) {
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
}
#else
for (int i = 1; i < n_threads; i++) {
const int64_t start = i*ne01/n_threads;
const int64_t end = (i + 1)*ne01/n_threads;
if (start < end) {
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
for (int64_t i01 = start; i01 < end; i01++) {
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
}
}));
}
}
{
// reuse the current thread for the first task
const int64_t start = 0;
const int64_t end = ne01/n_threads;
for (int64_t i01 = start; i01 < end; i01++) {
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
}
}
#endif
}
}
#ifndef GGML_USE_OPENMP
// wait for all tasks to finish
for (auto & task : ctx->tasks) {
task.get();
}
ctx->tasks.clear();
#endif
}
#if defined(OPENBLAS_VERSION)
openblas_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_BLIS)
bli_thread_set_num_threads(ctx->n_threads);
#endif
#if defined(GGML_BLAS_USE_NVPL)
nvpl_blas_set_num_threads(ctx->n_threads);
#endif
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne1, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
}
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
// src0: (k,n)
// src1: (k,m)
// dst: (m,n)
//
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
// Also expressed as (major,minor)
// a: (m,k): so src1 transposed
// b: (k,n): so src0
// c: (m,n)
//
// However, if ggml_is_transposed(src1) is true, then
// src1->data already contains a transposed version, so sgemm mustn't
// transpose it further.
int n = src0->ne[0];
int k = src0->ne[1];
int m = src1->ne[0];
CBLAS_TRANSPOSE transposeA;
int lda;
if (!ggml_is_transposed(src1)) {
transposeA = CblasTrans;
lda = m;
} else {
transposeA = CblasNoTrans;
lda = k;
}
float * a = (float *) ((char *) src1->data);
float * b = (float *) ((char *) src0->data);
float * c = (float *) ((char *) dst->data);
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
GGML_UNUSED(ctx);
}
// backend interface
static const char * ggml_backend_blas_name(ggml_backend_t backend) {
return "BLAS";
GGML_UNUSED(backend);
}
static void ggml_backend_blas_free(ggml_backend_t backend) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
delete ctx;
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
}
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
switch (node->op) {
case GGML_OP_MUL_MAT:
ggml_backend_blas_mul_mat(ctx, node);
break;
case GGML_OP_OUT_PROD:
ggml_backend_blas_out_prod(ctx, node);
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
default:
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
}
}
return GGML_STATUS_SUCCESS;
GGML_UNUSED(backend);
}
static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
(op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
op->src[1]->type == GGML_TYPE_F32 &&
ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
GGML_UNUSED(backend);
}
static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
GGML_UNUSED(backend);
}
static struct ggml_backend_i blas_backend_i = {
/* .get_name = */ ggml_backend_blas_name,
/* .free = */ ggml_backend_blas_free,
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_blas_graph_compute,
/* .supports_op = */ ggml_backend_blas_supports_op,
/* .supports_buft = */ ggml_backend_blas_supports_buft,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_blas_guid(void) {
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
return &guid;
}
ggml_backend_t ggml_backend_blas_init(void) {
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_blas_guid(),
/* .interface = */ blas_backend_i,
/* .device = */ nullptr,
/* .context = */ ctx,
};
#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
}
#endif
#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
#endif
return backend;
}
bool ggml_backend_is_blas(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
}
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
ctx->n_threads = n_threads;
}