mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
1442677f92
* common : gpt_params_parse do not print usage * common : rework usage print (wip) * common : valign * common : rework print_usage * infill : remove cfg support * common : reorder args * server : deduplicate parameters ggml-ci * common : add missing header ggml-ci * common : remote --random-prompt usages ggml-ci * examples : migrate to gpt_params ggml-ci * batched-bench : migrate to gpt_params * retrieval : migrate to gpt_params * common : change defaults for escape and n_ctx * common : remove chatml and instruct params ggml-ci * common : passkey use gpt_params
194 lines
6.0 KiB
C++
194 lines
6.0 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "ggml.h"
|
|
|
|
#include <cstdio>
|
|
#include <random>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
/**
|
|
* This the arbitrary data which will be passed to each callback.
|
|
* Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
|
|
*/
|
|
struct callback_data {
|
|
std::vector<uint8_t> data;
|
|
};
|
|
|
|
static std::string ggml_ne_string(const ggml_tensor * t) {
|
|
std::string str;
|
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
|
str += std::to_string(t->ne[i]);
|
|
if (i + 1 < GGML_MAX_DIMS) {
|
|
str += ", ";
|
|
}
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
|
GGML_ASSERT(n > 0);
|
|
float sum = 0;
|
|
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
|
printf(" [\n");
|
|
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
|
if (i2 == n && ne[2] > 2*n) {
|
|
printf(" ..., \n");
|
|
i2 = ne[2] - n;
|
|
}
|
|
printf(" [\n");
|
|
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
|
if (i1 == n && ne[1] > 2*n) {
|
|
printf(" ..., \n");
|
|
i1 = ne[1] - n;
|
|
}
|
|
printf(" [");
|
|
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
|
if (i0 == n && ne[0] > 2*n) {
|
|
printf("..., ");
|
|
i0 = ne[0] - n;
|
|
}
|
|
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
|
float v;
|
|
if (type == GGML_TYPE_F16) {
|
|
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
|
} else if (type == GGML_TYPE_F32) {
|
|
v = *(float *) &data[i];
|
|
} else if (type == GGML_TYPE_I32) {
|
|
v = (float) *(int32_t *) &data[i];
|
|
} else if (type == GGML_TYPE_I16) {
|
|
v = (float) *(int16_t *) &data[i];
|
|
} else if (type == GGML_TYPE_I8) {
|
|
v = (float) *(int8_t *) &data[i];
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
printf("%12.4f", v);
|
|
sum += v;
|
|
if (i0 < ne[0] - 1) printf(", ");
|
|
}
|
|
printf("],\n");
|
|
}
|
|
printf(" ],\n");
|
|
}
|
|
printf(" ]\n");
|
|
printf(" sum = %f\n", sum);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* GGML operations callback during the graph execution.
|
|
*
|
|
* @param t current tensor
|
|
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
|
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
|
|
* see ggml_backend_sched_eval_callback
|
|
* @param user_data user data to pass at each call back
|
|
* @return true to receive data or continue the graph, false otherwise
|
|
*/
|
|
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
|
auto * cb_data = (callback_data *) user_data;
|
|
|
|
const struct ggml_tensor * src0 = t->src[0];
|
|
const struct ggml_tensor * src1 = t->src[1];
|
|
|
|
if (ask) {
|
|
return true; // Always retrieve data
|
|
}
|
|
|
|
char src1_str[128] = {0};
|
|
if (src1) {
|
|
sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
|
}
|
|
|
|
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
|
t->name, ggml_type_name(t->type), ggml_op_desc(t),
|
|
src0->name, ggml_ne_string(src0).c_str(),
|
|
src1 ? src1_str : "",
|
|
ggml_ne_string(t).c_str());
|
|
|
|
|
|
// copy the data from the GPU memory if needed
|
|
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
|
|
|
if (!is_host) {
|
|
auto n_bytes = ggml_nbytes(t);
|
|
cb_data->data.resize(n_bytes);
|
|
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
|
|
}
|
|
|
|
if (!ggml_is_quantized(t->type)) {
|
|
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
|
|
ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool run(llama_context * ctx, const gpt_params & params) {
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
callback_data cb_data;
|
|
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
return 1;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
std::mt19937 rng(params.seed);
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
// pass the callback to the backend scheduler
|
|
// it will be executed for each node during the graph computation
|
|
params.cb_eval = ggml_debug;
|
|
params.cb_eval_user_data = &cb_data;
|
|
params.warmup = false;
|
|
|
|
// init
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr || ctx == nullptr) {
|
|
fprintf(stderr, "%s : failed to init\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
|
}
|
|
|
|
bool OK = run(ctx, params);
|
|
if (!OK) {
|
|
return 1;
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|