1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-18 16:18:31 +01:00
llama.cpp/tests/test-tokenizer-1-bpe.cpp
Diego Devesa 7eee341bee
common : use common_ prefix for common library functions ()
* common : use common_ prefix for common library functions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-10-10 22:57:42 +02:00

153 lines
4.7 KiB
C++

#include "llama.h"
#include "common.h"
#include "unicode.h"
#include "console.h"
#include <cassert>
#include <codecvt>
#include <cstdio>
#include <cstring>
#include <locale>
#include <string>
#include <thread>
#include <vector>
#include <atomic>
int main(int argc, char **argv) {
if (argc < 2 || argc > 3) {
fprintf(stderr, "Usage: %s <vocab-file> [--ignore-merges]\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
bool ignore_merges = false;
if (argc == 3) {
if (std::strcmp(argv[2], "--ignore-merges") != 0) {
fprintf(stderr, "Usage: %s <vocab-file> [--ignore-merges]\n", argv[0]);
return 1;
}
ignore_merges = true;
}
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
if (ignore_merges) {
fprintf(stderr, "%s : ignoring merges for tokens inside vocab\n", __func__);
}
llama_model * model;
llama_context * ctx;
llama_backend_init();
// load the vocab
{
auto mparams = llama_model_default_params();
mparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
auto cparams = llama_context_default_params();
ctx = llama_new_context_with_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
//GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
return 99;
}
#ifdef _WIN32
// We need this for unicode console support
console::init(false, false);
atexit([]() { console::cleanup(); });
#endif
const int n_vocab = llama_n_vocab(model);
for (int i = 0; i < n_vocab; ++i) {
std::string str = common_detokenize(ctx, std::vector<int>(1, i));
try {
auto cps = unicode_cpts_from_utf8(str);
std::vector<llama_token> tokens = common_tokenize(ctx, str, false, true);
if (ignore_merges && tokens.size() > 1) {
fprintf(stderr,
"%s : error: token %d detokenizes to '%s'(%zu) but "
"tokenization of this to multiple tokens: [",
__func__, i, str.c_str(), str.length());
fprintf(stderr, "%d", tokens[0]);
for (size_t i = 1; i < tokens.size(); i++) {
fprintf(stderr, ", %d", tokens[i]);
}
fprintf(stderr, "]\n");
return 2;
}
std::string check = common_detokenize(ctx, tokens);
if (check != str) {
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
return 2;
}
}
catch (const std::invalid_argument &) {
//fprintf(stderr, "%s : info: utf8 conversion %d '%s'\n", __func__, i, str.c_str());
}
}
// unicode
{
const int nthread = std::thread::hardware_concurrency();
std::vector<std::thread> threads(nthread);
std::atomic_int errcode = {};
for (int i = 0; i < nthread; ++i) {
threads[i] = std::thread([i, nthread, ctx, &errcode]() {
for (uint32_t cp = i; !errcode && cp < 0x00110000; cp += nthread) {
if ((0x0000D800 <= cp && cp <= 0x0000DFFF) || // surrogates \p{Cs}
(0x00040000 <= cp && cp <= 0x000E0000)) { // undefined \p{Cn}
continue;
}
std::string str = unicode_cpt_to_utf8(cp);
std::vector<llama_token> tokens = common_tokenize(ctx, str, false);
std::string check = common_detokenize(ctx, tokens);
if (cp != 9601 && str != check) {
fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
cp, check.c_str(), check.length(), str.c_str(), str.length());
errcode = 3;
}
}
});
}
for (auto & t : threads) {
t.join();
}
if (errcode) {
return errcode;
}
}
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return 0;
}