mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 19:08:44 +01:00
1b9ae5189c
* (wip) argparser v3 * migrated * add test * handle env * fix linux build * add export-docs example * fix build (2) * skip build test-arg-parser on windows * update server docs * bring back missing --alias * bring back --n-predict * clarify test-arg-parser * small correction * add comments * fix args with 2 values * refine example-specific args * no more lamba capture Co-authored-by: slaren@users.noreply.github.com * params.sparams * optimize more * export-docs --> gen-docs
173 lines
4.7 KiB
C++
173 lines
4.7 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static void print_usage(int, char ** argv) {
|
|
LOG_TEE("\nexample usage:\n");
|
|
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
|
|
LOG_TEE("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
params.prompt = "Hello my name is";
|
|
params.n_predict = 32;
|
|
|
|
auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_COMMON, print_usage);
|
|
if (!gpt_params_parse(argc, argv, params, options)) {
|
|
return 1;
|
|
}
|
|
|
|
// total length of the sequence including the prompt
|
|
const int n_predict = params.n_predict;
|
|
|
|
// init LLM
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// initialize the context
|
|
|
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
auto sparams = llama_sampler_chain_default_params();
|
|
|
|
sparams.no_perf = false;
|
|
|
|
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
|
|
|
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
|
|
|
|
// tokenize the prompt
|
|
|
|
std::vector<llama_token> tokens_list;
|
|
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
|
|
|
|
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
|
|
|
|
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
|
if (n_kv_req > n_ctx) {
|
|
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
|
LOG_TEE("%s: either reduce n_predict or increase n_ctx\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// print the prompt token-by-token
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
for (auto id : tokens_list) {
|
|
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
|
}
|
|
|
|
fflush(stderr);
|
|
|
|
// create a llama_batch with size 512
|
|
// we use this object to submit token data for decoding
|
|
|
|
llama_batch batch = llama_batch_init(512, 0, 1);
|
|
|
|
// evaluate the initial prompt
|
|
for (size_t i = 0; i < tokens_list.size(); i++) {
|
|
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
|
|
}
|
|
|
|
// llama_decode will output logits only for the last token of the prompt
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// main loop
|
|
|
|
int n_cur = batch.n_tokens;
|
|
int n_decode = 0;
|
|
|
|
const auto t_main_start = ggml_time_us();
|
|
|
|
while (n_cur <= n_predict) {
|
|
// sample the next token
|
|
{
|
|
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
|
|
|
|
llama_sampler_accept(smpl, new_token_id);
|
|
|
|
// is it an end of generation?
|
|
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
|
LOG_TEE("\n");
|
|
|
|
break;
|
|
}
|
|
|
|
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
|
fflush(stdout);
|
|
|
|
// prepare the next batch
|
|
llama_batch_clear(batch);
|
|
|
|
// push this new token for next evaluation
|
|
llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
|
|
|
|
n_decode += 1;
|
|
}
|
|
|
|
n_cur += 1;
|
|
|
|
// evaluate the current batch with the transformer model
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
|
|
const auto t_main_end = ggml_time_us();
|
|
|
|
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
|
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
|
|
|
LOG_TEE("\n");
|
|
llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
|
|
llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
llama_batch_free(batch);
|
|
llama_sampler_free(smpl);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|