mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
873 lines
28 KiB
C++
873 lines
28 KiB
C++
#include <chrono>
|
|
#include "../server/httplib.h"
|
|
#include "../server/json.hpp"
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include "frontend.h"
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
using namespace httplib;
|
|
using namespace std;
|
|
using namespace nlohmann;
|
|
|
|
struct server_params
|
|
{
|
|
std::string hostname = "127.0.0.1";
|
|
std::string public_path = "examples/server/public";
|
|
int32_t port = 8080;
|
|
int32_t read_timeout = 600;
|
|
int32_t write_timeout = 600;
|
|
};
|
|
|
|
// utils functions taken of examples/server
|
|
|
|
static bool ends_with(const std::string &str, const std::string &suffix)
|
|
{
|
|
return str.size() >= suffix.size() &&
|
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
|
}
|
|
|
|
static size_t find_partial_stop_string(const std::string &stop,
|
|
const std::string &text)
|
|
{
|
|
if (!text.empty() && !stop.empty())
|
|
{
|
|
const char text_last_char = text.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
|
{
|
|
if (stop[char_index] == text_last_char)
|
|
{
|
|
const std::string current_partial = stop.substr(0, char_index + 1);
|
|
if (ends_with(text, current_partial))
|
|
{
|
|
return text.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return std::string::npos;
|
|
}
|
|
|
|
enum stop_type
|
|
{
|
|
STOP_FULL,
|
|
STOP_PARTIAL,
|
|
};
|
|
|
|
enum slot_state
|
|
{
|
|
IDLE,
|
|
PROCESSING
|
|
};
|
|
|
|
enum slot_command {
|
|
NONE,
|
|
LOAD_PROMPT,
|
|
RELEASE
|
|
};
|
|
|
|
|
|
struct llama_client_slot
|
|
{
|
|
int id;
|
|
int32_t n_prompt = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t i_batch = -1;
|
|
string prompt = "";
|
|
string sampled_token_str;
|
|
string generated_text = "";
|
|
llama_token sampled;
|
|
std::vector<llama_token> tokens_prev;
|
|
slot_state state = IDLE;
|
|
slot_command command = NONE;
|
|
bool newToken = false;
|
|
float temperature = 0.1f;
|
|
|
|
void start(string prompt_, float temp_) {
|
|
prompt = prompt_;
|
|
command = LOAD_PROMPT;
|
|
temperature = temp_;
|
|
newToken = false;
|
|
}
|
|
|
|
bool hasNewToken() {
|
|
if(newToken) {
|
|
newToken = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool available() {
|
|
return state == IDLE && command == NONE;
|
|
}
|
|
|
|
void nofity() {
|
|
newToken = !newToken;
|
|
}
|
|
|
|
void release() {
|
|
if(state == PROCESSING) {
|
|
command = RELEASE;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_parallel_context {
|
|
// example props
|
|
vector<llama_client_slot> slots;
|
|
std::string system_prompt = "";
|
|
bool update_system_prompt = true;
|
|
|
|
// broadcast to all clients to keep the same prompt format
|
|
std::string user_name = ""; // this should be the anti prompt
|
|
std::string assistant_name = ""; // this is for generate the prompt
|
|
|
|
// llama native props
|
|
gpt_params params;
|
|
llama_model *model = NULL;
|
|
llama_context *ctx = NULL;
|
|
int n_ctx;
|
|
int n_vocab;
|
|
std::vector<llama_token_data> candidates;
|
|
std::vector<llama_token> tokens_system;
|
|
int32_t n_tokens_system = 0;
|
|
llama_batch batch;
|
|
|
|
bool loadModel(gpt_params params_) {
|
|
params = params_;
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr)
|
|
{
|
|
LOG_TEE("unable to load model: %s", params.model.c_str());
|
|
return false;
|
|
}
|
|
n_ctx = llama_n_ctx(ctx);
|
|
n_vocab = llama_n_vocab(model);
|
|
candidates.reserve(n_vocab);
|
|
return true;
|
|
}
|
|
|
|
void initialize() {
|
|
// create slots
|
|
LOG_TEE("Available slots:\n");
|
|
for (int i = 0; i < params.n_parallel; i++)
|
|
{
|
|
llama_client_slot slot;
|
|
slot.id = i;
|
|
slot.prompt = "default";
|
|
slot.state = IDLE;
|
|
slot.tokens_prev.resize(std::max(256, params.n_predict));
|
|
std::fill(slot.tokens_prev.begin(), slot.tokens_prev.end(), 0);
|
|
LOG_TEE(" - slot %i\n", slot.id);
|
|
slots.push_back(slot);
|
|
}
|
|
batch = llama_batch_init(params.n_ctx, 0);
|
|
|
|
// always assign a default system prompt
|
|
system_prompt = system_prompt_default;
|
|
user_name = "User:";
|
|
assistant_name = "Assistant:";
|
|
params.antiprompt.push_back(user_name);
|
|
}
|
|
|
|
void updateSystemPrompt() {
|
|
tokens_system = ::llama_tokenize(ctx, system_prompt, true);
|
|
n_tokens_system = tokens_system.size();
|
|
|
|
batch.n_tokens = n_tokens_system;
|
|
|
|
// clear the entire KV cache
|
|
for (int i = 0; i < params.n_parallel; ++i)
|
|
{
|
|
llama_kv_cache_seq_rm(ctx, i, 0, -1);
|
|
}
|
|
|
|
for (int32_t i = 0; i < batch.n_tokens; ++i)
|
|
{
|
|
batch.token[i] = tokens_system[i];
|
|
batch.pos[i] = i;
|
|
batch.seq_id[i] = 0;
|
|
batch.logits[i] = false;
|
|
}
|
|
|
|
if (llama_decode(ctx, batch) != 0)
|
|
{
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// assign the system KV cache to all parallel sequences
|
|
for (int32_t i = 1; i < params.n_parallel; ++i)
|
|
{
|
|
llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system);
|
|
}
|
|
|
|
LOG_TEE("system prompt updated\n");
|
|
update_system_prompt = false;
|
|
}
|
|
|
|
void notifySystemPromptChanged() {
|
|
// release all slots
|
|
for (llama_client_slot &slot : slots)
|
|
{
|
|
slot.release();
|
|
}
|
|
waitAllAreIdle();
|
|
// wait until system prompt load
|
|
update_system_prompt = true;
|
|
while(update_system_prompt) {
|
|
this_thread::sleep_for(chrono::milliseconds(5));
|
|
}
|
|
// system prompt loaded, continue
|
|
}
|
|
|
|
llama_client_slot* requestCompletion(json data) {
|
|
if(data.contains("system_prompt") &&
|
|
data.contains("anti_prompt") &&
|
|
data.contains("assistant_name")) {
|
|
system_prompt = data.value("system_prompt", "");
|
|
user_name = data.value("anti_prompt", "");
|
|
assistant_name = data.value("assistant_name", "");
|
|
params.antiprompt.clear();
|
|
params.antiprompt.push_back(user_name);
|
|
notifySystemPromptChanged();
|
|
}
|
|
int slot_id = data.value("slot_id", -1);
|
|
float temperature = data.value("temperature", 0.1f);
|
|
string prompt = data.value("prompt", "");
|
|
for (llama_client_slot & slot : slots)
|
|
{
|
|
if (
|
|
slot_id == -1 && slot.available() ||
|
|
slot.id == slot_id)
|
|
{
|
|
slot.start(prompt, temperature);
|
|
LOG_TEE("slot %i is processing\n", slot.id);
|
|
return &slot; // return a pointer to slot (thread safe?)
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
|
|
const stop_type type)
|
|
{
|
|
size_t stop_pos = std::string::npos;
|
|
for (const std::string &word : params.antiprompt)
|
|
{
|
|
size_t pos;
|
|
if (type == STOP_FULL)
|
|
{
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
pos = text.find(word, from_pos);
|
|
}
|
|
else
|
|
{
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
if (pos != std::string::npos &&
|
|
(stop_pos == std::string::npos || pos < stop_pos))
|
|
{
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
return stop_pos;
|
|
}
|
|
|
|
void waitAllAreIdle() {
|
|
bool wait = true;
|
|
while(wait) {
|
|
wait = false;
|
|
for (auto &slot : slots)
|
|
{
|
|
if (!slot.available())
|
|
{
|
|
wait = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool updateSlots() {
|
|
// update the system prompt wait until all slots are idle state
|
|
if(update_system_prompt) {
|
|
updateSystemPrompt();
|
|
}
|
|
|
|
batch.n_tokens = 0;
|
|
|
|
// decode any currently ongoing sequences
|
|
for (auto & slot : slots) {
|
|
if (slot.state == PROCESSING && slot.command == RELEASE)
|
|
{
|
|
LOG_TEE("slot %i released\n", slot.id);
|
|
llama_kv_cache_seq_rm(ctx, slot.id, n_tokens_system, n_ctx);
|
|
slot.state = IDLE;
|
|
slot.command = NONE;
|
|
continue;
|
|
}
|
|
|
|
// no decode wait until the token had been send to client
|
|
// improves performance and avoid decoherence?
|
|
|
|
if (slot.state == IDLE || slot.newToken) {
|
|
continue;
|
|
}
|
|
|
|
batch.token [batch.n_tokens] = slot.sampled;
|
|
batch.pos [batch.n_tokens] = n_tokens_system + slot.n_prompt + slot.n_decoded;
|
|
batch.seq_id[batch.n_tokens] = slot.id;
|
|
batch.logits[batch.n_tokens] = true;
|
|
|
|
slot.n_decoded += 1;
|
|
slot.i_batch = batch.n_tokens;
|
|
|
|
batch.n_tokens += 1;
|
|
}
|
|
|
|
// assign workload to the slots
|
|
if (params.cont_batching || batch.n_tokens == 0) {
|
|
for (llama_client_slot & slot : slots) {
|
|
// need process the prompt
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT) {
|
|
slot.state = PROCESSING;
|
|
slot.command = NONE;
|
|
//LOG_TEE("slot %i process prompt:\n%s%s'------------------------------\n", slot.id, system_prompt.c_str(), slot.prompt.c_str());
|
|
std::fill(slot.tokens_prev.begin(), slot.tokens_prev.end(), 0);
|
|
|
|
// do not prepend BOS because we have a system prompt!
|
|
std::vector<llama_token> tokens_prompt;
|
|
tokens_prompt = ::llama_tokenize(ctx, slot.prompt, false);
|
|
|
|
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
|
batch.token [batch.n_tokens] = tokens_prompt[i];
|
|
batch.pos [batch.n_tokens] = i + n_tokens_system;
|
|
batch.seq_id[batch.n_tokens] = slot.id;
|
|
batch.logits[batch.n_tokens] = false;
|
|
batch.n_tokens += 1;
|
|
}
|
|
|
|
// extract the logits only for the last token
|
|
if (batch.n_tokens > 0) {
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
}
|
|
|
|
slot.n_prompt = tokens_prompt.size();
|
|
slot.n_decoded = 0;
|
|
slot.i_batch = batch.n_tokens - 1;
|
|
|
|
// insert new requests one-by-one
|
|
//if (cont_batching) {
|
|
// break;
|
|
//}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0) {
|
|
return true;
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = params.n_batch;
|
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
|
// experiment: process in powers of 2
|
|
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
|
|
// n_batch /= 2;
|
|
// i -= n_batch;
|
|
// continue;
|
|
//}
|
|
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
if (ret != 0) {
|
|
if (n_batch == 1 || ret < 0) {
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
|
return false;
|
|
}
|
|
|
|
LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
continue;
|
|
}
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
|
|
continue;
|
|
}
|
|
|
|
params.temp = slot.temperature;
|
|
const llama_token id = llama_sample_token(ctx, NULL, NULL, params, slot.tokens_prev, candidates, slot.i_batch - i);
|
|
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
slot.tokens_prev.erase(slot.tokens_prev.begin());
|
|
slot.tokens_prev.push_back(id);
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
slot.generated_text += token_str;
|
|
slot.sampled = id;
|
|
|
|
size_t pos = 0;
|
|
|
|
size_t stop_pos =
|
|
findStoppingStrings(slot.generated_text, token_str.size(), STOP_FULL);
|
|
|
|
slot.sampled_token_str = token_str;
|
|
// notify new token
|
|
slot.nofity();
|
|
|
|
if (slot.n_decoded > 2 &&
|
|
(id == llama_token_eos(ctx) ||
|
|
(params.n_predict > 0 &&
|
|
slot.n_decoded + slot.n_prompt >=
|
|
params.n_predict) ||
|
|
stop_pos != std::string::npos)) {
|
|
//LOG_TEE("slot %i generated text:\n%s'------------------------------\n", slot.id, slot.generated_text.c_str());
|
|
slot.generated_text.clear();
|
|
slot.release();
|
|
}
|
|
slot.i_batch = -1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|
const server_params &sparams)
|
|
{
|
|
printf("usage: %s [options]\n", argv0);
|
|
printf("\n");
|
|
printf("options:\n");
|
|
printf(" -h, --help show this help message and exit\n");
|
|
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
|
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
|
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
|
|
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
|
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
|
if (llama_mlock_supported())
|
|
{
|
|
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
|
}
|
|
if (llama_mmap_supported())
|
|
{
|
|
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
|
}
|
|
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
printf(" -ngl N, --n-gpu-layers N\n");
|
|
printf(" number of layers to store in VRAM\n");
|
|
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
|
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
|
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
|
printf(" -nommq, --no-mul-mat-q\n");
|
|
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
|
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
|
#endif
|
|
printf(" -m FNAME, --model FNAME\n");
|
|
printf(" model path (default: %s)\n", params.model.c_str());
|
|
printf(" -a ALIAS, --alias ALIAS\n");
|
|
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
|
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
|
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
|
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
|
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
|
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
|
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
|
|
|
// new arguments
|
|
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
|
|
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
|
printf(" -f FNAME, --file FNAME\n");
|
|
printf(" load a system prompt from a file.\n");
|
|
printf("\n");
|
|
}
|
|
|
|
static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|
gpt_params ¶ms)
|
|
{
|
|
gpt_params default_params;
|
|
server_params default_sparams;
|
|
std::string arg;
|
|
bool invalid_param = false;
|
|
|
|
for (int i = 1; i < argc; i++)
|
|
{
|
|
arg = argv[i];
|
|
if (arg == "--port")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.port = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--host")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.hostname = argv[i];
|
|
}
|
|
else if (arg == "--path")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.public_path = argv[i];
|
|
}
|
|
else if (arg == "--timeout" || arg == "-to")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.read_timeout = std::stoi(argv[i]);
|
|
sparams.write_timeout = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-m" || arg == "--model")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
}
|
|
else if (arg == "-a" || arg == "--alias")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_alias = argv[i];
|
|
}
|
|
else if (arg == "-h" || arg == "--help")
|
|
{
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ctx = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--rope-freq-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_base = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--rope-freq-scale")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_scale = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
|
{
|
|
params.memory_f16 = false;
|
|
}
|
|
else if (arg == "--threads" || arg == "-t")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-b" || arg == "--batch-size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_batch = std::stoi(argv[i]);
|
|
params.n_batch = std::min(512, params.n_batch);
|
|
}
|
|
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
params.n_gpu_layers = std::stoi(argv[i]);
|
|
#else
|
|
LOG_TEE("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
|
"See main README.md for information on enabling GPU BLAS support\n");
|
|
#endif
|
|
}
|
|
else if (arg == "--tensor-split" || arg == "-ts")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
std::string arg_next = argv[i];
|
|
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
|
{
|
|
if (i_device < split_arg.size())
|
|
{
|
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
|
}
|
|
else
|
|
{
|
|
params.tensor_split[i_device] = 0.0f;
|
|
}
|
|
}
|
|
#else
|
|
LOG_TEE("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
|
{
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.mul_mat_q = false;
|
|
#else
|
|
LOG_TEE("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--main-gpu" || arg == "-mg")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.main_gpu = std::stoi(argv[i]);
|
|
#else
|
|
LOG_TEE("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.");
|
|
#endif
|
|
}
|
|
else if (arg == "--lora")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.push_back({argv[i], 1.0f});
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-scaled")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
const char * lora_adapter = argv[i];
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.push_back(make_tuple(lora_adapter, std::stof(argv[i])));
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_base = argv[i];
|
|
}
|
|
else if (arg == "--mlock")
|
|
{
|
|
params.use_mlock = true;
|
|
}
|
|
else if (arg == "--no-mmap")
|
|
{
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--numa")
|
|
{
|
|
params.numa = true;
|
|
} else if (arg == "-cb" || arg == "--cont-batching") {
|
|
params.cont_batching = true;
|
|
} else if (arg == "-np" || arg == "--parallel") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_parallel = std::stoi(argv[i]);
|
|
} else if (arg == "-n" || arg == "--n-predict") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_predict = std::stoi(argv[i]);
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (invalid_param)
|
|
{
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
gpt_params params;
|
|
|
|
server_params sparams;
|
|
|
|
server_params_parse(argc, argv, sparams, params);
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("server-parallel", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
// load the target model
|
|
params.logits_all = true;
|
|
server_parallel_context llama;
|
|
|
|
if(!llama.loadModel(params)) {
|
|
return 1;
|
|
}
|
|
|
|
llama.initialize();
|
|
|
|
Server svr;
|
|
|
|
svr.Get("/", [&](const Request & /*req*/, Response &res)
|
|
{ res.set_content(index_html_, "text/html"); });
|
|
|
|
svr.Get("/index.js", [&](const Request & /*req*/, Response &res)
|
|
{ res.set_content(index_js_, "text/html"); });
|
|
|
|
svr.Get("/props", [&llama](const Request & /*req*/, Response &res)
|
|
{
|
|
json data = {
|
|
{ "user_name", llama.user_name.c_str() },
|
|
{ "assistant_name", llama.assistant_name.c_str() }
|
|
};
|
|
res.set_content(data.dump(), "application/json"); });
|
|
|
|
svr.Post("/completion", [&llama](const Request &req, Response &res)
|
|
{
|
|
llama_client_slot* slot = llama.requestCompletion(json::parse(req.body));
|
|
// Verify if the slot exist
|
|
if (slot) {
|
|
res.set_chunked_content_provider("text/event-stream",
|
|
[slot](size_t /*offset*/, DataSink &sink) {
|
|
if(slot->available()) { // slot has been released
|
|
sink.done();
|
|
return false;
|
|
}
|
|
if(slot->hasNewToken()) { // new token notification
|
|
stringstream ss;
|
|
json res_d = {{ "content", slot->sampled_token_str }};
|
|
ss << "data: " << res_d.dump() << "\n\n";
|
|
string result = ss.str();
|
|
if(!sink.write(result.c_str(), result.size())) {
|
|
slot->release();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
});
|
|
} else {
|
|
LOG_TEE("slot unavailable\n");
|
|
res.status = 404;
|
|
res.set_content("slot_error", "text/plain");
|
|
} });
|
|
|
|
thread t([&llama]()
|
|
{
|
|
bool running = true;
|
|
while (running)
|
|
{
|
|
running = llama.updateSlots();
|
|
} });
|
|
|
|
svr.set_read_timeout(sparams.read_timeout);
|
|
svr.set_write_timeout(sparams.write_timeout);
|
|
|
|
if (!svr.bind_to_port(sparams.hostname, sparams.port))
|
|
{
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
return 1;
|
|
}
|
|
|
|
// Set the base directory for serving static files
|
|
svr.set_base_dir(sparams.public_path);
|
|
|
|
// to make it ctrl+clickable:
|
|
printf("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
|
|
if (!svr.listen_after_bind())
|
|
{
|
|
return 1;
|
|
}
|
|
}
|