mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
ec1b100720
* Merge tokenizer fixes into the gguf branch. * Add test vocabularies
123 lines
3.7 KiB
C++
123 lines
3.7 KiB
C++
#define LLAMA_API_CPP // TODO: eliminate me
|
|
#include "llama.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <codecvt>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
static std::string vocab_type(llama_context* ctx) {
|
|
return llama_n_vocab(ctx) == 32000 ? "spm": "bpe";
|
|
}
|
|
|
|
static std::string escape_whitespace(const std::string& text) {
|
|
std::string result;
|
|
bool escaping = false;
|
|
result += "\xe2\x96\x81";
|
|
for (size_t offs = 0; offs < text.length(); ++offs) {
|
|
if (text[offs] == ' ') {
|
|
if (!escaping) {
|
|
result += "\xe2\x96\x81";
|
|
escaping = true;
|
|
}
|
|
}
|
|
else {
|
|
escaping = false;
|
|
result += text[offs];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::string unescape_whitespace(llama_context* ctx, const std::vector<llama_token>& tokens) {
|
|
std::string result;
|
|
for (int i = 0; i < tokens.size(); ++i) {
|
|
result += llama_token_to_str(ctx, tokens[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
if (argc < 2) {
|
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
const std::string fname = argv[1];
|
|
|
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
llama_backend_init(false);
|
|
|
|
// load the vocab
|
|
{
|
|
auto lparams = llama_context_default_params();
|
|
|
|
lparams.vocab_only = true;
|
|
|
|
model = llama_load_model_from_file(fname.c_str(), lparams);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
return 1;
|
|
}
|
|
|
|
ctx = llama_new_context_with_model(model, lparams);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
const int n_vocab = llama_n_vocab(ctx);
|
|
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
std::string forward = llama_token_to_str_bpe(ctx, i);
|
|
std::vector<llama_token> tokens = llama_tokenize_bpe(ctx, forward, false);
|
|
if (tokens.size() == 1) {
|
|
if (i != tokens[0]) {
|
|
std::string backward = llama_token_to_str(ctx, tokens[0]);
|
|
fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n",
|
|
__func__, i, llama_token_to_str(ctx, i).c_str(), tokens[0], backward.c_str());
|
|
return 2;
|
|
}
|
|
} else {
|
|
if ((vocab_type(ctx) == "spm" && i <= 258) ||
|
|
(vocab_type(ctx) == "bpe" && (i == 0 || i >= 100000))) {
|
|
fprintf(stderr, "%s : info: token %d is string %s and bpe returns tokens %s\n",
|
|
__func__, i, llama_token_to_str(ctx, i).c_str(), unescape_whitespace(ctx, tokens).c_str());
|
|
} else {
|
|
fprintf(stderr, "%s : error: token %d is string %s but bpe returns tokens %s\n",
|
|
__func__, i, llama_token_to_str(ctx, i).c_str(), unescape_whitespace(ctx, tokens).c_str());
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::wstring_convert<typename std::codecvt_utf8<wchar_t>, wchar_t> converter;
|
|
for (wchar_t ch = 0x0000; ch < 0xffff; ++ch) {
|
|
std::wstring wstr(1, ch);
|
|
std::string str = converter.to_bytes(wstr);
|
|
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
|
|
if (tokens.size() == 1) {
|
|
fprintf(stderr, "%s : info: %s tokenized to %d \n",
|
|
__func__, str.c_str(), tokens[0]);
|
|
}
|
|
}
|
|
|
|
llama_free_model(model);
|
|
llama_free(ctx);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|