95 lines
2.6 KiB
JavaScript

const paramDefaults = {
stream: true,
n_predict: 500,
temperature: 0.2,
stop: ["</s>"]
};
let generation_settings = null;
/**
* This function completes the input text using a llama dictionary.
* @param {object} params - The parameters for the completion request.
* @param {object} controller - an instance of AbortController if you need one, or null.
* @param {function} callback - The callback function to call when the completion is done.
* @returns {string} the completed text as a string. Ideally ignored, and you get at it via the callback.
*/
export const llamaComplete = async (params, controller, callback) => {
if (!controller) {
controller = new AbortController();
}
const completionParams = { ...paramDefaults, ...params };
// we use fetch directly here becasue the built in fetchEventSource does not support POST
const response = await fetch("/completion", {
method: 'POST',
body: JSON.stringify(completionParams),
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
},
signal: controller.signal,
});
const reader = response.body.getReader();
const decoder = new TextDecoder();
let content = "";
try {
let cont = true;
while (cont) {
const result = await reader.read();
if (result.done) {
break;
}
// sse answers in the form multiple lines of: value\n with data always present as a key. in our case we
// mainly care about the data: key here, which we expect as json
const text = decoder.decode(result.value);
// parse all sse events and add them to result
const regex = /^(\S+):\s(.*)$/gm;
for (const match of text.matchAll(regex)) {
result[match[1]] = match[2]
}
// since we know this is llama.cpp, let's just decode the json in data
result.data = JSON.parse(result.data);
content += result.data.content;
// callack
if (callback) {
cont = callback(result) != false;
}
// if we got a stop token from server, we will break here
if (result.data.stop) {
if(result.data.generation_settings) {
generation_settings = result.data.generation_settings;
}
break;
}
}
} catch (e) {
console.error("llama error: ", e);
throw e;
}
finally {
controller.abort();
}
return content;
}
export const llamaModelInfo = async () => {
if (!generation_settings) {
generation_settings = await fetch("/model.json").then(r => r.json());
}
return generation_settings;
}