mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
0e89203b51
* sampling : one sequence per sampling context ggml-ci * speculative : add tree-based sampling support ggml-ci * speculative : reuse the n_parallel CLI param * speculative : refactor sampling * examples : fix build after sampling refactoring ggml-ci * batched : fix n_seq_id * sampling : fix malloc ggml-ci * swift : fix build ggml-ci * swift : try to fix build ggml-ci * prompts : add assistant.txt * common : add llama_batch_add() and llama_batch_clear() helpers * speculative : minor refactor ggml-ci * minor : comments + rename ggml-ci * speculative : fix off-by-one for n_drafted * speculative : fix the n_drafted fix + p constants
194 lines
6.8 KiB
C++
194 lines
6.8 KiB
C++
#include "sampling.h"
|
|
|
|
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params) {
|
|
struct llama_sampling_context * result = new llama_sampling_context();
|
|
|
|
result->params = params.sampling_params;
|
|
result->grammar = nullptr;
|
|
|
|
// if there is a grammar, parse it
|
|
if (!params.grammar.empty()) {
|
|
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
|
|
|
// will be empty (default) if there are parse errors
|
|
if (result->parsed_grammar.rules.empty()) {
|
|
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
|
|
|
result->grammar = llama_grammar_init(
|
|
grammar_rules.data(),
|
|
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
|
}
|
|
|
|
result->prev.resize(params.n_ctx);
|
|
|
|
return result;
|
|
}
|
|
|
|
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
|
if (ctx->grammar != NULL) {
|
|
llama_grammar_free(ctx->grammar);
|
|
}
|
|
|
|
delete ctx;
|
|
}
|
|
|
|
void llama_sampling_reset(llama_sampling_context * ctx) {
|
|
if (ctx->grammar != NULL) {
|
|
llama_grammar_free(ctx->grammar);
|
|
}
|
|
|
|
if (!ctx->parsed_grammar.rules.empty()) {
|
|
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
|
|
|
|
ctx->grammar = llama_grammar_init(
|
|
grammar_rules.data(),
|
|
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
|
|
}
|
|
|
|
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
|
ctx->cur.clear();
|
|
}
|
|
|
|
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
|
if (dst->grammar) {
|
|
llama_grammar_free(dst->grammar);
|
|
dst->grammar = nullptr;
|
|
}
|
|
|
|
if (src->grammar) {
|
|
dst->grammar = llama_grammar_copy(src->grammar);
|
|
}
|
|
|
|
dst->prev = src->prev;
|
|
}
|
|
|
|
llama_token llama_sampling_sample(
|
|
struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_main,
|
|
struct llama_context * ctx_cfg,
|
|
const int idx) {
|
|
const int n_ctx = llama_n_ctx(ctx_main);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
|
|
|
const llama_sampling_params & params = ctx_sampling->params;
|
|
|
|
const float temp = params.temp;
|
|
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float tfs_z = params.tfs_z;
|
|
const float typical_p = params.typical_p;
|
|
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float alpha_presence = params.presence_penalty;
|
|
const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = params.mirostat;
|
|
const float mirostat_tau = params.mirostat_tau;
|
|
const float mirostat_eta = params.mirostat_eta;
|
|
const bool penalize_nl = params.penalize_nl;
|
|
|
|
auto & prev = ctx_sampling->prev;
|
|
auto & cur = ctx_sampling->cur;
|
|
|
|
llama_token id = 0;
|
|
|
|
float * logits = llama_get_logits_ith(ctx_main, idx);
|
|
|
|
// Apply params.logit_bias map
|
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
|
logits[it->first] += it->second;
|
|
}
|
|
|
|
cur.clear();
|
|
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
|
|
|
if (ctx_cfg) {
|
|
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
|
|
}
|
|
|
|
// apply penalties
|
|
if (!prev.empty()) {
|
|
const float nl_logit = logits[llama_token_nl(ctx_main)];
|
|
const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
|
|
|
|
llama_sample_repetition_penalty(ctx_main, &cur_p,
|
|
prev.data() + prev.size() - last_n_repeat,
|
|
last_n_repeat, repeat_penalty);
|
|
llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
|
|
prev.data() + prev.size() - last_n_repeat,
|
|
last_n_repeat, alpha_frequency, alpha_presence);
|
|
|
|
if (!penalize_nl) {
|
|
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
|
if (cur_p.data[idx].id == llama_token_nl(ctx_main)) {
|
|
cur_p.data[idx].logit = nl_logit;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ctx_sampling->grammar != NULL) {
|
|
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
|
}
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
|
} else {
|
|
if (mirostat == 1) {
|
|
const int mirostat_m = 100;
|
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
|
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
|
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
size_t min_keep = std::max(1, params.n_probs);
|
|
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
|
|
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
|
|
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
|
|
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
|
|
llama_sample_temp (ctx_main, &cur_p, temp);
|
|
|
|
id = llama_sample_token(ctx_main, &cur_p);
|
|
|
|
//{
|
|
// const int n_top = 10;
|
|
// LOG("top %d candidates:\n", n_top);
|
|
|
|
// for (int i = 0; i < n_top; i++) {
|
|
// const llama_token id = cur_p.data[i].id;
|
|
// (void)id; // To avoid a warning that id is unused when logging is disabled.
|
|
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
|
// }
|
|
//}
|
|
|
|
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
|
}
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
void llama_sampling_accept(
|
|
struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_main,
|
|
llama_token id) {
|
|
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
|
ctx_sampling->prev.push_back(id);
|
|
|
|
if (ctx_sampling->grammar != NULL) {
|
|
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
|
|
}
|
|
}
|