mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 12:33:06 +01:00
f648ca2cee
ggml-ci
80 lines
3.4 KiB
C++
80 lines
3.4 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
// sampling parameters
|
|
typedef struct gpt_sampling_params {
|
|
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling
|
|
|
|
int32_t n_prev = 64; // number of previous tokens to remember
|
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
|
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
|
int32_t top_k = 40; // <= 0 to use vocab size
|
|
float top_p = 0.95f; // 1.0 = disabled
|
|
float min_p = 0.05f; // 0.0 = disabled
|
|
float tfs_z = 1.00f; // 1.0 = disabled
|
|
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
|
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
|
float dynatemp_range = 0.00f; // 0.0 = disabled
|
|
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
|
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
|
float penalty_repeat = 1.00f; // 1.0 = disabled
|
|
float penalty_freq = 0.00f; // 0.0 = disabled
|
|
float penalty_present = 0.00f; // 0.0 = disabled
|
|
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
|
float mirostat_tau = 5.00f; // target entropy
|
|
float mirostat_eta = 0.10f; // learning rate
|
|
bool penalize_nl = false; // consider newlines as a repeatable token
|
|
bool ignore_eos = false;
|
|
|
|
std::vector<enum llama_sampler_type> samplers = {
|
|
LLAMA_SAMPLER_TYPE_TOP_K,
|
|
LLAMA_SAMPLER_TYPE_TFS_Z,
|
|
LLAMA_SAMPLER_TYPE_TYPICAL_P,
|
|
LLAMA_SAMPLER_TYPE_TOP_P,
|
|
LLAMA_SAMPLER_TYPE_MIN_P,
|
|
LLAMA_SAMPLER_TYPE_TEMPERATURE
|
|
};
|
|
|
|
std::string grammar; // optional BNF-like grammar to constrain sampling
|
|
|
|
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
|
|
|
// print the parameters into a string
|
|
std::string print_all() const;
|
|
|
|
// print the samplers into a string
|
|
std::string print_samplers() const;
|
|
} gpt_sampling_params;
|
|
|
|
// overload of llama_sampling_init using gpt_sampling_params
|
|
struct llama_sampling * llama_sampling_init(const struct llama_model * model, const struct gpt_sampling_params & params);
|
|
|
|
void llama_sampling_cp(llama_sampling * src, llama_sampling *& dst);
|
|
|
|
// common sampling implementation:
|
|
//
|
|
// - set logits
|
|
// - apply the configured sampling constraints
|
|
// - check if the token fits the grammar (if any)
|
|
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
|
|
//
|
|
llama_token llama_sampling_sample(
|
|
struct llama_sampling * smpl,
|
|
struct llama_context * ctx,
|
|
int idx);
|
|
|
|
// helpers
|
|
|
|
// get a string representation of the last accepted tokens
|
|
std::string llama_sampling_prev_str(llama_sampling * smpl, llama_context * ctx, int n);
|
|
|
|
char llama_sampling_type_to_chr(enum llama_sampler_type sampler_type);
|
|
std::string llama_sampling_type_to_str(enum llama_sampler_type sampler_type);
|
|
|
|
std::vector<enum llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
|
std::vector<enum llama_sampler_type> llama_sampling_types_from_chars(const std::string & chars);
|