llama.cpp/examples/train-text-from-scratch
liuwei-git 201cc11afa
llama : add phi3 128K model support (#7225)
* add phi3 128k support in convert-hf-to-gguf

* add phi3 128k support in cuda

* address build warnings on llama.cpp

* adjust index value in cuda long rope freq factors

* add long rope support in ggml cpu backend

* make freq factors only depend on ctx size

* remove unused rope scaling type 'su' frin gguf converter

* fix flint warnings on convert-hf-to-gguf.py

* set to the short freq factor when context size is small than trained context size

* add one line of comments

* metal : support rope freq_factors

* ggml : update ggml_rope_ext API to support freq. factors

* backends : add dev messages to support rope freq. factors

* minor : style

* tests : update to use new rope API

* backends : fix pragma semicolons

* minor : cleanup

* llama : move rope factors from KV header to tensors

* llama : remove tmp assert

* cuda : fix compile warning

* convert : read/write n_head_kv

* llama : fix uninitialized tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-21 23:28:32 +03:00
..
2023-07-19 10:01:11 +03:00
2023-09-28 21:40:11 +03:00

train-text-from-scratch

Basic usage instructions:

# get training data
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt

# train
./bin/train-text-from-scratch \
        --vocab-model ../models/ggml-vocab-llama.gguf \
        --ctx 64 --embd 256 --head 8 --layer 16 \
        --checkpoint-in  chk-shakespeare-256x16-LATEST.gguf \
        --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
        --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
        --train-data "shakespeare.txt" \
        -t 6 -b 16 --seed 1 --adam-iter 256 \
        --no-checkpointing

# predict
./bin/main -m ggml-shakespeare-256x16-f32.gguf

Output files will be saved every N iterations (config with --save-every N). The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.

To train GGUF models just pass them to --checkpoint-in FN.