mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 06:40:45 +01:00
a0b3ac8c48
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as independent dynamic shared objects, that may be conditionally linked at runtime in a multiplatform binary. It introduces a GGML_CALL annotation that documents which functions have a cyclic call relationship, between the application code and GPU modules. This change does nothing, unless the build defines -DGGML_MULTIPLATFORM which causes back-references and function pointers to conform to MS ABI which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
117 lines
5.2 KiB
C
117 lines
5.2 KiB
C
#pragma once
|
|
|
|
// ggml-backend internal header
|
|
|
|
#include "ggml-backend.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
//
|
|
// Backend buffer
|
|
//
|
|
|
|
// buffer type
|
|
typedef void * ggml_backend_buffer_type_context_t;
|
|
|
|
struct ggml_backend_buffer_type_i {
|
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
|
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
|
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
|
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
|
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
|
// check if tensor data is in host memory
|
|
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
|
|
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
|
};
|
|
|
|
struct ggml_backend_buffer_type {
|
|
struct ggml_backend_buffer_type_i iface;
|
|
ggml_backend_buffer_type_context_t context;
|
|
};
|
|
|
|
// buffer
|
|
typedef void * ggml_backend_buffer_context_t;
|
|
|
|
struct ggml_backend_buffer_i {
|
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
|
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
|
|
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
|
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
|
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
|
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
|
};
|
|
|
|
struct ggml_backend_buffer {
|
|
struct ggml_backend_buffer_i iface;
|
|
ggml_backend_buffer_type_t buft;
|
|
ggml_backend_buffer_context_t context;
|
|
size_t size;
|
|
enum ggml_backend_buffer_usage usage;
|
|
};
|
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
|
ggml_backend_buffer_type_t buft,
|
|
struct ggml_backend_buffer_i iface,
|
|
ggml_backend_buffer_context_t context,
|
|
size_t size);
|
|
|
|
// do not use directly, use ggml_backend_tensor_copy instead
|
|
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
//
|
|
// Backend
|
|
//
|
|
|
|
typedef void * ggml_backend_context_t;
|
|
|
|
struct ggml_backend_i {
|
|
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
|
|
|
|
void (*GGML_CALL free)(ggml_backend_t backend);
|
|
|
|
// buffer allocation
|
|
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
|
|
|
|
// (optional) asynchronous tensor data access
|
|
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// (optional) complete all pending operations
|
|
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
|
|
|
// compute graph with a plan
|
|
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
|
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
void (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
|
|
// compute graph without a plan (async)
|
|
bool (*GGML_CALL graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
|
|
// check if the backend supports an operation
|
|
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
|
};
|
|
|
|
struct ggml_backend {
|
|
struct ggml_backend_i iface;
|
|
|
|
ggml_backend_context_t context;
|
|
};
|
|
|
|
//
|
|
// Backend registry
|
|
//
|
|
|
|
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
|
|
|
|
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|