slaren 16bc66d947
llama.cpp : split llama_context_params into model and context params (#3301)
* llama.cpp : split llama_context_params into model and context params

ggml-ci

* fix metal build

* fix freq_base/scale default to model value

* llama-bench : keep the same model between tests when possible

* move n_threads to llama_context_params, add n_threads_batch

* fix mpi build

* remove kv_size(), cuda scratch fixes

* remove low-vram option

* add n_threads_batch to system info, refactor to get_system_info()

* add documentation about --threads-batch to the READMEs

* llama-bench fix

* main : fix rope freq/scale warning

* llama.cpp : add llama_get_model
common : add llama_tokenize from model

* remove duplicated ctx/model functions

ggml-ci

* cuda : print total VRAM used
2023-09-28 22:42:38 +03:00
..
2023-07-19 10:01:11 +03:00
2023-09-21 11:57:40 +03:00

llama.cpp/example/embedding

This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.

Quick Start

To get started right away, run the following command, making sure to use the correct path for the model you have:

Unix-based systems (Linux, macOS, etc.):

./embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null

Windows:

embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null

The above command will output space-separated float values.