mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 04:20:24 +01:00
8cf19d60dc
* check whether platform is 390x if yes->do not import immintrin.h * support s390x big endian * support --bigendian option for s390x 1. verified with baichuan7b-chat with float 16 on s390x 2. verified with baichuan7b-chat 3. verified with chinese-alpaca-2-13b-f16 * update format based on editor-config checker result * Update convert-baichuan-hf-to-gguf.py * 1. check in ggml.c if endianess is not match 2. update GGUF version 3. change get_pack_prefix to property 4. update information log * always use "GGUF" as beginng of GGUF file * Compare "GGUF" with file header char by char 1. Set GGUF_MAGIC to "GGUF" string instead of int value 2. Compare "GGUF" char by char to ensure its byte order 3. Move bytes swap code from convert.py to gguf.py write_tensor_data --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
gguf
This is a Python package for writing binary files in the GGUF (GGML Universal File) format.
See convert-llama-hf-to-gguf.py as an example for its usage.
Installation
pip install gguf
Development
Maintainers who participate in development of this package are advised to install it in editable mode:
cd /path/to/llama.cpp/gguf-py
pip install --editable .
Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py
.
In this case, upgrade Pip to the latest:
pip install --upgrade pip
Automatic publishing with CI
There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.
- Bump the version in
pyproject.toml
. - Create a tag named
gguf-vx.x.x
wherex.x.x
is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
- Push the tags.
git push origin --tags
Manual publishing
If you want to publish the package manually for any reason, you need to have twine
and build
installed:
pip install build twine
Then, folow these steps to release a new version:
- Bump the version in
pyproject.toml
. - Build the package:
python -m build
- Upload the generated distribution archives:
python -m twine upload dist/*
TODO
- Add tests
- Include conversion scripts as command line entry points in this package.