mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 02:48:44 +01:00
6efb8eb30e
* Update Imports and Add Notes for Future Reference
- Updated import statements in `convert.py`.
- Added import for `AutoTokenizer` from `transformers` module.
- Added conditional import for `gguf` from the local directory.
- Added comments and notes for future reference.
Additional Notes:
- Noted removal of a redundant `TypeAlias` import.
- Noted the removal of a `gguf` debug statement.
- Commented on the presence of `ARCH` and `NDArray` definitions.
- Commented on cleaning up and refactoring data type definitions.
* Refine Model Hyperparameters and Params Class
- Updated type annotations to use `Optional` for clarity.
- Improved method names and attribute consistency.
- Removed unnecessary variables for better code readability.
Additional Notes:
- Highlighted the use of `Optional` for clearer intent.
- Ensured backward and forward compatibility.
* Restore BpeVocab and SentencePieceVocab classes
- Restored the BpeVocab class for handling BPE tokenization.
- Restored the SentencePieceVocab class for SentencePiece tokenization.
These classes are essential for maintaining the original behavior of the codebase.
* refactor: Standardize vocabulary handling with HfVocab
- Replaced VocabLoader with HfVocab, aligning vocabulary handling across classes.
- Updated initialization of HfVocab with local_files_only=True for AutoTokenizer.
- Introduced optional parameter fname_added_tokens for flexible added token management.
- Streamlined added token handling for clarity and conciseness.
- Maintained special tokens and IDs, enhancing token management.
- Simplified token processing methods for improved readability.
- Added a placeholder for score computation with a default value of -1000.0.
- Optimized newline token check for efficiency.
- Updated __repr__ function for clarity in representation.
- Adjusted type alias Vocab to include BpeVocab, SentencePieceVocab, and HfVocab.
- Removed redundant code related to special token handling, reverse vocabulary mapping, and vocabulary file detection.
This refactoring promotes a standardized and modular approach to vocabulary management, facilitating future integration with a VocabFactory and improving code maintainability and scalability.
* refactor: Enhance readability, functionality, and code quality
- Improved code formatting and readability for better maintainability.
- Refactored LazyUnpickler's CLASSES dictionary for clarity.
- Added print statements and warnings in check_vocab_size for user feedback.
- Removed find_vocab_file_path, as it's superseded by VocabFactory.
- Preparatory changes for upcoming classes: OutputFile and VocabFactory.
- Overall focus on code quality, error handling, and consistency.
These changes reflect a continuous effort to refine the codebase, ensuring it meets best practices and prepares for future enhancements, such as the VocabFactory.
* refactor: Update OutputFile class for enhanced model vocabulary management
- Restructured the constructor for improved readability.
- Updated `add_meta_arch` method for flexible model name determination.
- Introduced `handle_tokenizer_model` for mapping vocab types to supported tokenizer models.
- Streamlined vocabulary extraction with `extract_vocabulary_from_model`.
- Simplified vocabulary metadata addition using `add_meta_vocab`.
- Refactored `add_tensor_info` for clarity and consistency.
- Improved error handling for better user feedback.
These changes signify the development of a versatile and comprehensive `OutputFile` class, enabling efficient management of model conversion output, metadata, vocabulary, and tensor information.
* feat: Introduce VocabFactory for flexible vocabulary management in model conversion
- The VocabFactory class is added to facilitate modular vocabulary handling.
- The constructor initializes a directory path and detects vocabulary-related files.
- The _select_file method provides file paths based on vocabulary type (e.g., BPE, SentencePiece).
- _create_special_vocab generates special vocabularies, accommodating different types.
- The load_vocab method loads vocabularies, handling BPE, SentencePiece, and Hugging Face Fast Tokenizer.
- Error handling and logging enhance debugging and user feedback.
- The modular and flexible design simplifies vocabulary management and supports future extensions.
The VocabFactory class enhances code modularity and maintainability, allowing versatile vocabulary handling in the model conversion process.
* refactor: Improve code organization, argument parsing, and user interface
- Renamed 'default_outfile' to 'default_output_file' for clarity.
- Refactored argument parser setup into 'get_argument_parser' function.
- Introduced descriptive comments for each argument in the parser.
- Added '--vocab-type' argument with choices ["spm", "bpe", "hfft"] for vocabulary processing.
- Improved flag naming consistency: '--outfile' to '--out-file' and '--bigendian' to '--big-endian'.
- Enhanced error handling to prevent overwriting input data in 'default_output_file'.
- Made 'argv' in 'main' an optional parameter for flexibility.
- Introduced dynamic import for 'awq.apply_awq' based on 'args.awq_path' for conditional dependency.
These changes enhance code clarity, organization, and the user interface of the script, aligning it with Python best practices and improving maintainability.
* refactor: Further refine functionality, improve user interaction, and streamline vocabulary handling
- Renamed command-line arguments for clarity and consistency.
- Improved path resolution and import adjustments for robustness.
- Thoughtfully handled 'awq-path' and conditional logic for the weighted model.
- Enhanced model and vocabulary loading with the 'VocabFactory' class for structured and adaptable loading.
- Strengthened error handling and user feedback for a more user-friendly experience.
- Structured output file handling with clear conditions and defaults.
- Streamlined and organized the 'main' function for better logic flow.
- Passed 'sys.argv[1:]' to 'main' for adaptability and testability.
These changes solidify the script's functionality, making it more robust, user-friendly, and adaptable. The use of the 'VocabFactory' class is a notable enhancement in efficient vocabulary handling, reflecting a thoughtful and iterative approach to script development.
* chore: Apply ruff formatting to convert.py
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
* Revert to commit 0614c33
* chore: Apply flake8 formatting rules
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
* refactor: Revise `check_vocab_size` for Enhanced Clarity and Correctness
- Resolved an unreachable branch issue by reorganizing the conditional structure.
- Moved the special case check for `params.n_vocab == -1` to the top for immediate assertion.
- Flattened the conditional logic for improved clarity and predictability of the function's behavior.
These changes enhance the readability and functional correctness of the `check_vocab_size` function without altering its intended functionality.
* py : fix outfile and outtype
* py : suggest hint for missing vocab size
---------
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1659 lines
60 KiB
Python
Executable File
1659 lines
60 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import concurrent.futures
|
|
import enum
|
|
import faulthandler
|
|
import functools
|
|
import itertools
|
|
import json
|
|
import math
|
|
import mmap
|
|
import os
|
|
import pickle
|
|
import re
|
|
import signal
|
|
import struct
|
|
import sys
|
|
import time
|
|
import warnings
|
|
import zipfile
|
|
from abc import ABCMeta, abstractmethod
|
|
from argparse import ArgumentParser
|
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import (
|
|
IO,
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Iterable,
|
|
Literal,
|
|
Optional,
|
|
Tuple,
|
|
TypeVar,
|
|
)
|
|
|
|
import numpy as np
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
try:
|
|
from transformers import AutoTokenizer
|
|
except ModuleNotFoundError as e:
|
|
warnings.warn(f"Could not import AutoTokenizer from transformers: {e}")
|
|
|
|
# If NO_LOCAL_GGUF is not set, try to import gguf from the local gguf-py directory
|
|
if "NO_LOCAL_GGUF" not in os.environ:
|
|
# Use absolute path to the gguf-py directory
|
|
gguf_py_dir = str(Path(__file__).resolve().parent / "gguf-py")
|
|
print(gguf_py_dir) # NOTE: Remove this once path is verified after changes are completed
|
|
if gguf_py_dir not in sys.path:
|
|
sys.path.insert(1, gguf_py_dir)
|
|
|
|
# Import gguf module
|
|
try:
|
|
import gguf
|
|
except ModuleNotFoundError as e:
|
|
print(f"Could not import gguf: {e}")
|
|
sys.exit(1)
|
|
|
|
if TYPE_CHECKING: # NOTE: This isn't necessary.
|
|
from typing import TypeAlias # This can technically be omitted.
|
|
|
|
if hasattr(faulthandler, "register") and hasattr(signal, "SIGUSR1"):
|
|
faulthandler.register(signal.SIGUSR1)
|
|
|
|
# NOTE: n-dimensional arrays should be directly referenced
|
|
NDArray: TypeAlias = "np.ndarray[Any, Any]"
|
|
|
|
# Why is this here? LLAMA and GPT are technically the only compatible ARCHs.
|
|
ARCH = gguf.MODEL_ARCH.LLAMA
|
|
|
|
DEFAULT_CONCURRENCY = 8
|
|
|
|
#
|
|
# data types
|
|
#
|
|
|
|
|
|
# TODO: Clean up and refactor data types
|
|
@dataclass(frozen=True)
|
|
class DataType:
|
|
name: str
|
|
dtype: np.dtype[Any]
|
|
valid_conversions: list[str]
|
|
|
|
def elements_to_bytes(self, n_elements: int) -> int:
|
|
return n_elements * self.dtype.itemsize
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class UnquantizedDataType(DataType):
|
|
pass
|
|
|
|
|
|
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
|
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
|
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
|
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class QuantizedDataType(DataType):
|
|
block_size: int
|
|
quantized_dtype: np.dtype[Any]
|
|
ggml_type: gguf.GGMLQuantizationType
|
|
|
|
def quantize(self, arr: NDArray) -> NDArray:
|
|
raise NotImplementedError(f'Quantization for {self.name} not implemented')
|
|
|
|
def elements_to_bytes(self, n_elements: int) -> int:
|
|
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
|
|
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class Q8_0QuantizedDataType(QuantizedDataType):
|
|
# Mini Q8_0 quantization in Python!
|
|
def quantize(self, arr: NDArray) -> NDArray:
|
|
assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
|
|
assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
|
|
n_blocks = arr.size // self.block_size
|
|
blocks = arr.reshape((n_blocks, self.block_size))
|
|
# Much faster implementation of block quantization contributed by @Cebtenzzre
|
|
|
|
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
|
|
d = abs(blocks).max(axis = 1) / np.float32(127)
|
|
with np.errstate(divide = 'ignore'):
|
|
qs = (blocks / d[:, None]).round()
|
|
qs[d == 0] = 0
|
|
yield from zip(d, qs)
|
|
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
|
|
|
|
|
|
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
|
|
dtype = np.dtype(np.float32), valid_conversions = [],
|
|
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
|
|
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
|
|
|
|
# Quantized types skipped here because they may also map to np.float32
|
|
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
|
|
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
|
|
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
|
|
raise ValueError(f'Invalid duplicate data type {dt}')
|
|
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
|
|
|
|
SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
|
|
'BF16': DT_BF16,
|
|
'F16': DT_F16,
|
|
'F32': DT_F32,
|
|
'I32': DT_I32,
|
|
}
|
|
|
|
# TODO: match this with `llama_ftype`
|
|
# TODO: rename to LLAMAFileType
|
|
# TODO: move to `gguf.py`
|
|
|
|
|
|
class GGMLFileType(enum.IntEnum):
|
|
AllF32 = 0
|
|
MostlyF16 = 1 # except 1d tensors
|
|
MostlyQ8_0 = 7 # except 1d tensors
|
|
|
|
def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
|
|
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
|
|
if dt is None:
|
|
raise ValueError(self)
|
|
# 1D tensors are always F32.
|
|
return dt if len(tensor.shape) > 1 else DT_F32
|
|
|
|
|
|
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
|
GGMLFileType.AllF32 : DT_F32,
|
|
GGMLFileType.MostlyF16 : DT_F16,
|
|
GGMLFileType.MostlyQ8_0: DT_Q8_0,
|
|
}
|
|
|
|
#
|
|
# hparams loading
|
|
#
|
|
|
|
|
|
@dataclass
|
|
class Params:
|
|
n_vocab: int
|
|
n_embd: int
|
|
n_layer: int
|
|
n_ctx: int
|
|
n_ff: int
|
|
n_head: int
|
|
n_head_kv: int
|
|
f_norm_eps: Optional[float] = None
|
|
n_experts: Optional[int] = None
|
|
n_experts_used: Optional[int] = None
|
|
|
|
rope_scaling_type: Optional[gguf.RopeScalingType] = None
|
|
f_rope_freq_base: Optional[float] = None
|
|
f_rope_scale: Optional[float] = None
|
|
n_orig_ctx: Optional[int] = None
|
|
rope_finetuned: Optional[bool] = None
|
|
|
|
ftype: Optional[GGMLFileType] = None
|
|
|
|
# path to the directory containing the model files
|
|
path_model: Optional[Path] = None
|
|
|
|
@staticmethod
|
|
def guessed(model: LazyModel) -> "Params":
|
|
# try transformer naming first
|
|
n_vocab, n_embd = (
|
|
model["model.embed_tokens.weight"].shape
|
|
if "model.embed_tokens.weight" in model
|
|
else model["tok_embeddings.weight"].shape
|
|
)
|
|
|
|
# try transformer naming first
|
|
if "model.layers.0.self_attn.q_proj.weight" in model:
|
|
n_layer = next(
|
|
i
|
|
for i in itertools.count()
|
|
if f"model.layers.{i}.self_attn.q_proj.weight" not in model
|
|
)
|
|
elif (
|
|
"model.layers.0.self_attn.W_pack.weight" in model
|
|
): # next: try baichuan naming
|
|
n_layer = next(
|
|
i
|
|
for i in itertools.count()
|
|
if f"model.layers.{i}.self_attn.W_pack.weight" not in model
|
|
)
|
|
else:
|
|
n_layer = next(
|
|
i
|
|
for i in itertools.count()
|
|
if f"layers.{i}.attention.wq.weight" not in model
|
|
)
|
|
|
|
if n_layer < 1:
|
|
raise Exception(
|
|
"failed to guess 'n_layer'. This model is unknown or unsupported.\n"
|
|
"Suggestion: provide 'config.json' of the model in the same directory containing model files."
|
|
)
|
|
|
|
n_head = n_embd // 128 # guessed
|
|
n_mult = 256 # guessed
|
|
|
|
# TODO: verify this
|
|
n_ff = int(2 * (4 * n_embd) / 3)
|
|
n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
|
|
|
|
return Params(
|
|
n_vocab=n_vocab,
|
|
n_embd=n_embd,
|
|
n_layer=n_layer,
|
|
n_ctx=-1,
|
|
n_ff=n_ff,
|
|
n_head=n_head,
|
|
n_head_kv=n_head,
|
|
f_norm_eps=1e-5,
|
|
)
|
|
|
|
@staticmethod
|
|
def load_transformers_config(model: LazyModel, config_path: Path) -> "Params":
|
|
config = json.load(open(config_path))
|
|
|
|
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
|
|
rope_scaling = config.get("rope_scaling")
|
|
|
|
if rope_scaling is not None and (typ := rope_scaling.get("type")):
|
|
rope_factor = rope_scaling.get("factor")
|
|
f_rope_scale = rope_factor
|
|
if typ == "linear":
|
|
rope_scaling_type = gguf.RopeScalingType.LINEAR
|
|
elif typ == "yarn":
|
|
rope_scaling_type = gguf.RopeScalingType.YARN
|
|
n_orig_ctx = rope_scaling["original_max_position_embeddings"]
|
|
rope_finetuned = rope_scaling["finetuned"]
|
|
else:
|
|
raise NotImplementedError(f"Unknown rope scaling type: {typ}")
|
|
|
|
if "max_sequence_length" in config:
|
|
n_ctx = config["max_sequence_length"]
|
|
elif "max_position_embeddings" in config:
|
|
n_ctx = config["max_position_embeddings"]
|
|
else:
|
|
raise Exception(
|
|
"failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
|
|
"Suggestion: provide 'config.json' of the model in the same directory containing model files."
|
|
)
|
|
|
|
n_experts = None
|
|
n_experts_used = None
|
|
|
|
if "num_local_experts" in config:
|
|
n_experts = config["num_local_experts"]
|
|
n_experts_used = config["num_experts_per_tok"]
|
|
|
|
return Params(
|
|
n_vocab=config["vocab_size"],
|
|
n_embd=config["hidden_size"],
|
|
n_layer=config["num_hidden_layers"],
|
|
n_ctx=n_ctx,
|
|
n_ff=config["intermediate_size"],
|
|
n_head=(n_head := config["num_attention_heads"]),
|
|
n_head_kv=config.get("num_key_value_heads", n_head),
|
|
n_experts=n_experts,
|
|
n_experts_used=n_experts_used,
|
|
f_norm_eps=config["rms_norm_eps"],
|
|
f_rope_freq_base=config.get("rope_theta"),
|
|
rope_scaling_type=rope_scaling_type,
|
|
f_rope_scale=f_rope_scale,
|
|
n_orig_ctx=n_orig_ctx,
|
|
rope_finetuned=rope_finetuned,
|
|
)
|
|
|
|
# LLaMA v2 70B params.json
|
|
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
|
@staticmethod
|
|
def load_torch_params(model: LazyModel, config_path: Path) -> "Params":
|
|
config = json.load(open(config_path))
|
|
|
|
n_experts = None
|
|
n_experts_used = None
|
|
f_rope_freq_base = None
|
|
|
|
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
|
if config.get("moe"):
|
|
# Mixtral
|
|
n_ctx = 32768
|
|
elif config.get("rope_theta") == 1000000:
|
|
# CodeLlama
|
|
n_ctx = 16384
|
|
elif config["norm_eps"] == 1e-05:
|
|
# LLaMA v2
|
|
n_ctx = 4096
|
|
else:
|
|
# LLaMA v1
|
|
n_ctx = 2048
|
|
|
|
if "layers.0.feed_forward.w1.weight" in model:
|
|
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
|
|
|
|
if config.get("moe"):
|
|
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
|
|
n_experts = config["moe"]["num_experts"]
|
|
n_experts_used = config["moe"]["num_experts_per_tok"]
|
|
f_rope_freq_base = 1e6
|
|
|
|
return Params(
|
|
n_vocab=config.get("vocab_size", model["tok_embeddings.weight"].shape[0]),
|
|
n_embd=config["dim"],
|
|
n_layer=config["n_layers"],
|
|
n_ctx=n_ctx,
|
|
n_ff=n_ff,
|
|
n_head=(n_head := config["n_heads"]),
|
|
n_head_kv=config.get("n_kv_heads", n_head),
|
|
n_experts=n_experts,
|
|
n_experts_used=n_experts_used,
|
|
f_norm_eps=config["norm_eps"],
|
|
f_rope_freq_base=config.get("rope_theta", f_rope_freq_base),
|
|
)
|
|
|
|
@staticmethod
|
|
def load(model_plus: ModelPlus) -> "Params":
|
|
hf_config_path = model_plus.paths[0].parent / "config.json"
|
|
orig_config_path = model_plus.paths[0].parent / "params.json"
|
|
|
|
if hf_config_path.exists():
|
|
params = Params.load_transformers_config(model_plus.model, hf_config_path)
|
|
elif orig_config_path.exists():
|
|
params = Params.load_torch_params(model_plus.model, orig_config_path)
|
|
elif model_plus.format != "none":
|
|
params = Params.guessed(model_plus.model)
|
|
else:
|
|
raise ValueError("Cannot guess params when model format is none")
|
|
|
|
params.path_model = model_plus.paths[0].parent
|
|
|
|
return params
|
|
|
|
|
|
class BpeVocab: # GPT
|
|
def __init__(
|
|
self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]
|
|
) -> None:
|
|
self.bpe_tokenizer = json.loads(
|
|
open(str(fname_tokenizer), encoding="utf-8").read()
|
|
)
|
|
added_tokens: dict[str, int]
|
|
if fname_added_tokens is not None:
|
|
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
|
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
|
else:
|
|
# Fall back to trying to find the added tokens in tokenizer.json
|
|
tokenizer_json_file = fname_tokenizer.parent / "tokenizer.json"
|
|
if not tokenizer_json_file.is_file():
|
|
added_tokens = {}
|
|
else:
|
|
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
|
added_tokens = dict(
|
|
(item["content"], item["id"])
|
|
for item in tokenizer_json.get("added_tokens", [])
|
|
# Added tokens here can be duplicates of the main vocabulary.
|
|
if item["content"] not in self.bpe_tokenizer
|
|
)
|
|
|
|
vocab_size: int = len(self.bpe_tokenizer)
|
|
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
|
actual_ids = sorted(added_tokens.values())
|
|
if expected_ids != actual_ids:
|
|
expected_end_id = vocab_size + len(actual_ids) - 1
|
|
raise Exception(
|
|
f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}"
|
|
)
|
|
|
|
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
|
self.added_tokens_list = [text for (text, idx) in items]
|
|
self.vocab_size_base: int = vocab_size
|
|
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
|
self.fname_tokenizer = fname_tokenizer
|
|
self.fname_added_tokens = fname_added_tokens
|
|
|
|
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
tokenizer = self.bpe_tokenizer
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
|
|
|
|
for i, _ in enumerate(tokenizer):
|
|
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
|
|
|
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
for text in self.added_tokens_list:
|
|
score = -1000.0
|
|
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
|
|
|
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
yield from self.bpe_tokens()
|
|
yield from self.added_tokens()
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
|
|
|
|
class SentencePieceVocab: # LlaMa
|
|
def __init__(
|
|
self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]
|
|
) -> None:
|
|
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
|
added_tokens: dict[str, int]
|
|
if fname_added_tokens is not None:
|
|
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
|
else:
|
|
added_tokens = {}
|
|
|
|
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
|
|
|
new_tokens = {
|
|
id: piece for piece, id in added_tokens.items() if id >= vocab_size
|
|
}
|
|
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
|
actual_new_ids = sorted(new_tokens.keys())
|
|
|
|
if expected_new_ids != actual_new_ids:
|
|
raise ValueError(
|
|
f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}"
|
|
)
|
|
|
|
# Token pieces that were added to the base vocabulary.
|
|
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
|
self.vocab_size_base = vocab_size
|
|
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
|
self.fname_tokenizer = fname_tokenizer
|
|
self.fname_added_tokens = fname_added_tokens
|
|
|
|
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
tokenizer = self.sentencepiece_tokenizer
|
|
for i in range(tokenizer.vocab_size()):
|
|
piece = tokenizer.id_to_piece(i)
|
|
text: bytes = piece.encode("utf-8")
|
|
score: float = tokenizer.get_score(i)
|
|
|
|
toktype = gguf.TokenType.NORMAL
|
|
if tokenizer.is_unknown(i):
|
|
toktype = gguf.TokenType.UNKNOWN
|
|
if tokenizer.is_control(i):
|
|
toktype = gguf.TokenType.CONTROL
|
|
|
|
# NOTE: I think added_tokens are user defined.
|
|
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
|
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
|
|
|
if tokenizer.is_unused(i):
|
|
toktype = gguf.TokenType.UNUSED
|
|
if tokenizer.is_byte(i):
|
|
toktype = gguf.TokenType.BYTE
|
|
|
|
yield text, score, toktype
|
|
|
|
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
for text in self.added_tokens_list:
|
|
score = -1000.0
|
|
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
|
|
|
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
yield from self.sentencepiece_tokens()
|
|
yield from self.added_tokens()
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
|
|
|
|
class HfVocab:
|
|
def __init__(
|
|
self,
|
|
fname_tokenizer: Path,
|
|
fname_added_tokens: Optional[Path] = None,
|
|
) -> None:
|
|
print("fname_tokenizer:", fname_tokenizer)
|
|
# Allow the tokenizer to default to slow or fast versions.
|
|
# Explicitly set tokenizer to use local paths.
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
fname_tokenizer,
|
|
cache_dir=fname_tokenizer,
|
|
local_files_only=True,
|
|
)
|
|
|
|
# Initialize lists and dictionaries for added tokens
|
|
self.added_tokens_list = []
|
|
self.added_tokens_dict = dict()
|
|
self.added_tokens_ids = set()
|
|
|
|
# Process added tokens
|
|
for tok, tokidx in sorted(
|
|
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
|
|
):
|
|
# Only consider added tokens that are not in the base vocabulary
|
|
if tokidx >= self.tokenizer.vocab_size:
|
|
self.added_tokens_list.append(tok)
|
|
self.added_tokens_dict[tok] = tokidx
|
|
self.added_tokens_ids.add(tokidx)
|
|
|
|
# Store special tokens and their IDs
|
|
self.specials = {
|
|
tok: self.tokenizer.get_vocab()[tok]
|
|
for tok in self.tokenizer.all_special_tokens
|
|
}
|
|
self.special_ids = set(self.tokenizer.all_special_ids)
|
|
|
|
# Set vocabulary sizes
|
|
self.vocab_size_base = self.tokenizer.vocab_size
|
|
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
|
|
|
self.fname_tokenizer = fname_tokenizer
|
|
self.fname_added_tokens = fname_added_tokens
|
|
|
|
def hf_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
|
reverse_vocab = {
|
|
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
|
|
}
|
|
|
|
for token_id in range(self.vocab_size_base):
|
|
# Skip processing added tokens here
|
|
if token_id in self.added_tokens_ids:
|
|
continue
|
|
|
|
# Convert token text to bytes
|
|
token_text = reverse_vocab[token_id].encode("utf-8")
|
|
|
|
# Yield token text, score, and type
|
|
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
|
token_id, self.special_ids # Reuse already stored special IDs
|
|
)
|
|
|
|
def get_token_type(self, token_id: int, special_ids: set) -> gguf.TokenType:
|
|
# Determine token type based on whether it's a special token
|
|
return (
|
|
gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
|
)
|
|
|
|
def get_token_score(self, token_id: int) -> float:
|
|
# Placeholder for actual logic to determine the token's score
|
|
# This needs to be implemented based on specific requirements
|
|
return -1000.0 # Default score
|
|
|
|
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
for text in self.added_tokens_list:
|
|
if text in self.specials:
|
|
toktype = self.get_token_type(self.specials[text], self.special_ids)
|
|
score = self.get_token_score(self.specials[text])
|
|
|
|
else:
|
|
toktype = gguf.TokenType.USER_DEFINED
|
|
score = -1000.0
|
|
|
|
yield text.encode("utf-8"), score, toktype
|
|
|
|
def has_newline_token(self):
|
|
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
|
|
|
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
|
yield from self.hf_tokens()
|
|
yield from self.added_tokens()
|
|
|
|
def __repr__(self) -> str:
|
|
return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
|
|
|
|
|
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab"
|
|
|
|
|
|
#
|
|
# data loading
|
|
# TODO: reuse (probably move to gguf.py?)
|
|
#
|
|
|
|
|
|
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
|
# print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
|
if n_head_kv is not None and n_head != n_head_kv:
|
|
n_head = n_head_kv
|
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
|
.swapaxes(1, 2)
|
|
.reshape(weights.shape))
|
|
|
|
|
|
class Tensor(metaclass=ABCMeta):
|
|
data_type: DataType
|
|
|
|
@abstractmethod
|
|
def astype(self, data_type: DataType) -> Tensor: ...
|
|
@abstractmethod
|
|
def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
|
|
@abstractmethod
|
|
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
|
|
@abstractmethod
|
|
def part(self, n_part: int) -> UnquantizedTensor: ...
|
|
@abstractmethod
|
|
def to_ggml(self) -> GGMLCompatibleTensor: ...
|
|
|
|
|
|
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
|
|
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
|
|
fp32_arr = bf16_arr.astype(np.uint32) << 16
|
|
return fp32_arr.view(np.float32)
|
|
|
|
|
|
class UnquantizedTensor(Tensor):
|
|
def __init__(self, ndarray: NDArray) -> None:
|
|
assert isinstance(ndarray, np.ndarray)
|
|
self.ndarray = ndarray
|
|
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
|
|
|
def astype(self, data_type: DataType) -> Tensor:
|
|
dtype = data_type.dtype
|
|
if self.data_type == DT_BF16:
|
|
self.ndarray = bf16_to_fp32(self.ndarray)
|
|
return UnquantizedTensor(self.ndarray.astype(dtype))
|
|
|
|
def to_ggml(self) -> UnquantizedTensor:
|
|
return self
|
|
|
|
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
|
r = self.ndarray.shape[0] // 3
|
|
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
|
|
|
|
def part(self, n_part: int) -> UnquantizedTensor:
|
|
r = self.ndarray.shape[0] // 3
|
|
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
|
|
|
|
def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
|
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
|
|
|
|
|
|
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
|
|
tensor = lazy_tensor.load()
|
|
assert isinstance(tensor, UnquantizedTensor)
|
|
|
|
# double-check:
|
|
actual_shape = list(tensor.ndarray.shape)
|
|
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
|
|
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
|
|
if convert:
|
|
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
|
|
else:
|
|
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
|
|
|
|
return tensor.ndarray
|
|
|
|
|
|
GGMLCompatibleTensor = UnquantizedTensor
|
|
|
|
|
|
@dataclass
|
|
class LazyTensor:
|
|
_load: Callable[[], Tensor]
|
|
shape: list[int]
|
|
data_type: DataType
|
|
description: str
|
|
|
|
def load(self) -> Tensor:
|
|
ret = self._load()
|
|
# Should be okay if it maps to the same numpy type?
|
|
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
|
|
(self.data_type, ret.data_type, self.description)
|
|
return ret
|
|
|
|
def astype(self, data_type: DataType) -> LazyTensor:
|
|
self.validate_conversion_to(data_type)
|
|
|
|
def load() -> Tensor:
|
|
return self.load().astype(data_type)
|
|
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
|
|
|
|
def validate_conversion_to(self, data_type: DataType) -> None:
|
|
if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
|
|
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
|
|
|
|
|
|
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
|
|
|
|
|
|
@dataclass
|
|
class ModelPlus:
|
|
model: LazyModel
|
|
paths: list[Path] # Where this was read from.
|
|
format: Literal['ggml', 'torch', 'safetensors', 'none']
|
|
vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
|
|
|
|
|
|
def merge_sharded(models: list[LazyModel]) -> LazyModel:
|
|
# Original LLaMA models have each file contain one part of each tensor.
|
|
# Use a dict instead of a set to preserve order.
|
|
names = {name: None for model in models for name in model}
|
|
|
|
def convert(name: str) -> LazyTensor:
|
|
lazy_tensors: list[LazyTensor] = [model[name] for model in models]
|
|
if len(lazy_tensors) == 1:
|
|
# only one file; don't go through this procedure since there might
|
|
# be quantized tensors
|
|
return lazy_tensors[0]
|
|
if len(lazy_tensors[0].shape) == 1:
|
|
# the tensor is just duplicated in every file
|
|
return lazy_tensors[0]
|
|
if name.startswith('tok_embeddings.') or \
|
|
name.endswith('.attention.wo.weight') or \
|
|
name.endswith('.feed_forward.w2.weight'):
|
|
# split by columns
|
|
axis = 1
|
|
else:
|
|
# split by rows
|
|
axis = 0
|
|
concatenated_shape = list(lazy_tensors[0].shape)
|
|
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
|
|
|
|
def load() -> UnquantizedTensor:
|
|
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
|
|
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
|
|
return UnquantizedTensor(concatenated)
|
|
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
|
|
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
|
|
return {name: convert(name) for name in names}
|
|
|
|
|
|
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
|
formats = set(mp.format for mp in models_plus)
|
|
assert len(formats) == 1, "different formats?"
|
|
format = formats.pop()
|
|
paths = [path for mp in models_plus for path in mp.paths]
|
|
# Use the first non-None vocab, if any.
|
|
try:
|
|
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
|
|
except StopIteration:
|
|
vocab = None
|
|
|
|
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
|
# Transformers models put different tensors in different files, but
|
|
# don't split individual tensors between files.
|
|
model: LazyModel = {}
|
|
for mp in models_plus:
|
|
model.update(mp.model)
|
|
else:
|
|
model = merge_sharded([mp.model for mp in models_plus])
|
|
|
|
return ModelPlus(model, paths, format, vocab)
|
|
|
|
|
|
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
|
|
def load() -> Tensor:
|
|
return lazy_tensor.load().permute(n_head, n_head_kv)
|
|
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
|
|
|
|
|
|
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
|
|
def load() -> Tensor:
|
|
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
|
|
s = lazy_tensor.shape.copy()
|
|
s[0] = s[0] // 3
|
|
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
|
|
|
|
|
|
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
|
def load() -> Tensor:
|
|
return lazy_tensor.load().part(n_part)
|
|
s = lazy_tensor.shape.copy()
|
|
s[0] = s[0] // 3
|
|
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
|
|
|
|
|
# Functionality that simulates `torch.load` but where individual tensors are
|
|
# only loaded into memory on demand, not all at once.
|
|
# PyTorch can't do this natively as of time of writing:
|
|
# - https://github.com/pytorch/pytorch/issues/64327
|
|
# This allows us to de-shard without multiplying RAM usage, and also
|
|
# conveniently drops the PyTorch dependency (though we still need numpy).
|
|
|
|
|
|
@dataclass
|
|
class LazyStorageKind:
|
|
data_type: DataType
|
|
|
|
|
|
@dataclass
|
|
class LazyStorage:
|
|
load: Callable[[int, int], NDArray]
|
|
kind: LazyStorageKind
|
|
description: str
|
|
|
|
|
|
class LazyUnpickler(pickle.Unpickler):
|
|
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
|
|
super().__init__(fp)
|
|
self.data_base_path = data_base_path
|
|
self.zip_file = zip_file
|
|
|
|
def persistent_load(self, pid: Any) -> Any:
|
|
assert pid[0] == 'storage'
|
|
assert isinstance(pid[1], LazyStorageKind)
|
|
data_type = pid[1].data_type
|
|
filename_stem = pid[2]
|
|
filename = f'{self.data_base_path}/{filename_stem}'
|
|
info = self.zip_file.getinfo(filename)
|
|
|
|
def load(offset: int, elm_count: int) -> NDArray:
|
|
dtype = data_type.dtype
|
|
fp = self.zip_file.open(info)
|
|
fp.seek(offset * dtype.itemsize)
|
|
size = elm_count * dtype.itemsize
|
|
data = fp.read(size)
|
|
assert len(data) == size
|
|
return np.frombuffer(data, dtype)
|
|
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
|
return LazyStorage(load=load, kind=pid[1], description=description)
|
|
|
|
@staticmethod
|
|
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
|
|
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
|
|
assert isinstance(storage, LazyStorage)
|
|
|
|
def load() -> UnquantizedTensor:
|
|
elm_count = stride[0] * size[0]
|
|
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
|
|
description = f'pickled storage_offset={storage_offset} in {storage.description}'
|
|
return LazyTensor(load, list(size), storage.kind.data_type, description)
|
|
|
|
@staticmethod
|
|
def rebuild_from_type_v2(func, new_type, args, state):
|
|
return func(*args)
|
|
|
|
CLASSES: dict[tuple[str, str], Any] = {
|
|
# getattr used here as a workaround for mypy not being smart enough to determine
|
|
# the staticmethods have a __func__ attribute.
|
|
("torch._tensor", "_rebuild_from_type_v2"): getattr(
|
|
rebuild_from_type_v2, "__func__"
|
|
),
|
|
("torch._utils", "_rebuild_tensor_v2"): getattr(
|
|
lazy_rebuild_tensor_v2, "__func__"
|
|
),
|
|
("torch", "BFloat16Storage"): LazyStorageKind(DT_BF16),
|
|
("torch", "HalfStorage"): LazyStorageKind(DT_F16),
|
|
("torch", "FloatStorage"): LazyStorageKind(DT_F32),
|
|
("torch", "IntStorage"): LazyStorageKind(DT_I32),
|
|
("torch", "Tensor"): LazyTensor,
|
|
}
|
|
|
|
def find_class(self, module: str, name: str) -> Any:
|
|
if not module.startswith('torch'):
|
|
return super().find_class(module, name)
|
|
return self.CLASSES[(module, name)]
|
|
|
|
|
|
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
|
zf = zipfile.ZipFile(outer_fp)
|
|
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
|
|
assert len(pickle_paths) == 1, pickle_paths
|
|
pickle_fp = zf.open(pickle_paths[0], 'r')
|
|
unpickler = LazyUnpickler(pickle_fp,
|
|
data_base_path=pickle_paths[0][:-4],
|
|
zip_file=zf)
|
|
model = unpickler.load()
|
|
if 'model' in model: model = model['model']
|
|
as_dict = dict(model.items())
|
|
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
|
|
|
|
|
|
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
|
header_size, = struct.unpack('<Q', fp.read(8))
|
|
header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
|
|
# Use mmap for the actual data to avoid race conditions with the file offset.
|
|
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
|
byte_buf = mapped[8 + header_size:]
|
|
|
|
def convert(info: dict[str, Any]) -> LazyTensor:
|
|
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
|
|
numpy_dtype = data_type.dtype
|
|
shape: list[int] = info['shape']
|
|
begin, end = info['data_offsets']
|
|
assert 0 <= begin <= end <= len(byte_buf)
|
|
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
|
|
buf = byte_buf[begin:end]
|
|
|
|
def load() -> UnquantizedTensor:
|
|
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
|
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
|
|
return LazyTensor(load, shape, data_type, description)
|
|
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
|
|
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
|
|
|
|
|
|
def must_read(fp: IO[bytes], length: int) -> bytes:
|
|
ret = fp.read(length)
|
|
if len(ret) < length:
|
|
raise Exception("unexpectedly reached end of file")
|
|
return ret
|
|
|
|
|
|
@functools.lru_cache(maxsize=None)
|
|
def lazy_load_file(path: Path) -> ModelPlus:
|
|
fp = open(path, 'rb')
|
|
first8 = fp.read(8)
|
|
fp.seek(0)
|
|
if first8[:2] == b'PK':
|
|
# A zip file, i.e. PyTorch format
|
|
return lazy_load_torch_file(fp, path)
|
|
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
|
|
# Probably safetensors
|
|
return lazy_load_safetensors_file(fp, path)
|
|
else:
|
|
raise ValueError(f"unknown format: {path}")
|
|
|
|
|
|
In = TypeVar('In')
|
|
Out = TypeVar('Out')
|
|
|
|
|
|
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
|
|
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
|
fast enough, this will stop calling `func` at some point rather than
|
|
letting results pile up in memory. Specifically, there is a max of one
|
|
output value buffered per thread.'''
|
|
if concurrency < 2:
|
|
yield from map(func, iterable)
|
|
# Not reached.
|
|
iterable = iter(iterable)
|
|
executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
|
|
if use_processpool_executor:
|
|
executor_class = ProcessPoolExecutor
|
|
else:
|
|
executor_class = ThreadPoolExecutor
|
|
with executor_class(max_workers = max_workers) as executor:
|
|
futures: list[concurrent.futures.Future[Out]] = []
|
|
done = False
|
|
for _ in range(concurrency):
|
|
try:
|
|
futures.append(executor.submit(func, next(iterable)))
|
|
except StopIteration:
|
|
done = True
|
|
break
|
|
|
|
while futures:
|
|
result = futures.pop(0).result()
|
|
while not done and len(futures) < concurrency:
|
|
try:
|
|
futures.append(executor.submit(func, next(iterable)))
|
|
except StopIteration:
|
|
done = True
|
|
break
|
|
yield result
|
|
|
|
|
|
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
|
|
# Handle special case where the model's vocab size is not set
|
|
if params.n_vocab == -1:
|
|
raise ValueError(
|
|
f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?"
|
|
)
|
|
|
|
# Check for a vocab size mismatch
|
|
if params.n_vocab == vocab.vocab_size:
|
|
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
|
return
|
|
|
|
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
|
pad_count = params.n_vocab - vocab.vocab_size
|
|
print(
|
|
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
|
|
)
|
|
for i in range(1, pad_count + 1):
|
|
vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
|
|
vocab.vocab_size = params.n_vocab
|
|
return
|
|
|
|
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
|
|
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
|
|
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
|
if vocab.vocab_size < params.n_vocab:
|
|
msg += " Add the --pad-vocab option and try again."
|
|
|
|
raise Exception(msg)
|
|
|
|
|
|
class OutputFile:
|
|
def __init__(
|
|
self, fname_out: Path, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE
|
|
) -> None:
|
|
self.gguf = gguf.GGUFWriter(
|
|
fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess
|
|
)
|
|
|
|
def add_meta_arch(self, params: Params) -> None:
|
|
name = "LLaMA"
|
|
|
|
# TODO: better logic to determine model name
|
|
if params.n_ctx == 4096:
|
|
name = "LLaMA v2"
|
|
elif params.path_model is not None:
|
|
name = str(params.path_model.parent).split("/")[-1]
|
|
|
|
self.gguf.add_name(name)
|
|
self.gguf.add_context_length(params.n_ctx)
|
|
self.gguf.add_embedding_length(params.n_embd)
|
|
self.gguf.add_block_count(params.n_layer)
|
|
self.gguf.add_feed_forward_length(params.n_ff)
|
|
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
|
self.gguf.add_head_count(params.n_head)
|
|
self.gguf.add_head_count_kv(params.n_head_kv)
|
|
|
|
if params.f_norm_eps is None:
|
|
raise ValueError("f_norm_eps is None")
|
|
|
|
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
|
|
|
|
if params.n_experts:
|
|
self.gguf.add_expert_count(params.n_experts)
|
|
|
|
if params.n_experts_used:
|
|
self.gguf.add_expert_used_count(params.n_experts_used)
|
|
|
|
if params.f_rope_freq_base is not None:
|
|
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
|
|
|
|
if params.rope_scaling_type:
|
|
assert params.f_rope_scale is not None
|
|
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
|
|
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
|
|
|
|
if params.n_orig_ctx is not None:
|
|
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
|
|
|
|
if params.rope_finetuned is not None:
|
|
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
|
|
|
|
if params.ftype is not None:
|
|
self.gguf.add_file_type(params.ftype)
|
|
|
|
def handle_tokenizer_model(self, vocab: Vocab) -> str:
|
|
# Map the vocab types to the supported tokenizer models
|
|
tokenizer_model = {
|
|
SentencePieceVocab: "llama",
|
|
HfVocab: "llama",
|
|
BpeVocab: "gpt2",
|
|
}.get(type(vocab))
|
|
|
|
# Block if vocab type is not predefined
|
|
if tokenizer_model is None:
|
|
raise ValueError("Unknown vocab type: Not supported")
|
|
|
|
return tokenizer_model
|
|
|
|
def extract_vocabulary_from_model(self, vocab: Vocab) -> Tuple[list, list, list]:
|
|
tokens = []
|
|
scores = []
|
|
toktypes = []
|
|
|
|
# NOTE: `all_tokens` returns the base vocabulary and added tokens
|
|
for text, score, toktype in vocab.all_tokens():
|
|
tokens.append(text)
|
|
scores.append(score)
|
|
toktypes.append(toktype)
|
|
|
|
return tokens, scores, toktypes
|
|
|
|
def add_meta_vocab(self, vocab: Vocab) -> None:
|
|
# Handle the tokenizer model
|
|
tokenizer_model = self.handle_tokenizer_model(vocab)
|
|
|
|
# Ensure that tokenizer_model is added to the GGUF model
|
|
self.gguf.add_tokenizer_model(tokenizer_model)
|
|
|
|
# Extract model vocabulary for model conversion
|
|
tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
|
|
|
|
# Add extracted token information for model conversion
|
|
self.gguf.add_token_list(tokens)
|
|
self.gguf.add_token_scores(scores)
|
|
self.gguf.add_token_types(toktypes)
|
|
|
|
def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
|
|
svocab.add_to_gguf(self.gguf)
|
|
|
|
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
|
|
n_elements = int(np.prod(tensor.shape))
|
|
raw_dtype = getattr(tensor.data_type, "ggml_type", None)
|
|
data_type = (
|
|
getattr(tensor.data_type, "quantized_type", None) or tensor.data_type.dtype
|
|
)
|
|
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
|
|
self.gguf.add_tensor_info(
|
|
name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype
|
|
)
|
|
|
|
def write_meta(self) -> None:
|
|
self.gguf.write_header_to_file()
|
|
self.gguf.write_kv_data_to_file()
|
|
|
|
def write_tensor_info(self) -> None:
|
|
self.gguf.write_ti_data_to_file()
|
|
|
|
def close(self) -> None:
|
|
self.gguf.close()
|
|
|
|
@staticmethod
|
|
def write_vocab_only(
|
|
fname_out: Path,
|
|
params: Params,
|
|
vocab: Vocab,
|
|
svocab: gguf.SpecialVocab,
|
|
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
|
pad_vocab: bool = False,
|
|
) -> None:
|
|
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
|
|
|
of = OutputFile(fname_out, endianess=endianess)
|
|
|
|
# meta data
|
|
of.add_meta_arch(params)
|
|
of.add_meta_vocab(vocab)
|
|
of.add_meta_special_vocab(svocab)
|
|
|
|
of.write_meta()
|
|
|
|
of.close()
|
|
|
|
@staticmethod
|
|
def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
|
|
name, lazy_tensor = item
|
|
tensor = lazy_tensor.load().to_ggml()
|
|
return (lazy_tensor.data_type, tensor.ndarray)
|
|
|
|
@staticmethod
|
|
def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
|
|
dt, arr = item
|
|
if not isinstance(dt, QuantizedDataType):
|
|
return arr
|
|
return dt.quantize(arr)
|
|
|
|
@staticmethod
|
|
def write_all(
|
|
fname_out: Path,
|
|
ftype: GGMLFileType,
|
|
params: Params,
|
|
model: LazyModel,
|
|
vocab: Vocab,
|
|
svocab: gguf.SpecialVocab,
|
|
concurrency: int = DEFAULT_CONCURRENCY,
|
|
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
|
pad_vocab: bool = False,
|
|
) -> None:
|
|
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
|
|
|
of = OutputFile(fname_out, endianess=endianess)
|
|
|
|
# meta data
|
|
of.add_meta_arch(params)
|
|
of.add_meta_vocab(vocab)
|
|
of.add_meta_special_vocab(svocab)
|
|
|
|
# tensor info
|
|
for name, lazy_tensor in model.items():
|
|
of.add_tensor_info(name, lazy_tensor)
|
|
|
|
of.write_meta()
|
|
of.write_tensor_info()
|
|
|
|
# tensor data
|
|
ndarrays_inner = bounded_parallel_map(
|
|
OutputFile.do_item, model.items(), concurrency=concurrency
|
|
)
|
|
if ftype == GGMLFileType.MostlyQ8_0:
|
|
ndarrays = bounded_parallel_map(
|
|
OutputFile.maybe_do_quantize,
|
|
ndarrays_inner,
|
|
concurrency=concurrency,
|
|
max_workers=concurrency,
|
|
use_processpool_executor=True,
|
|
)
|
|
else:
|
|
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
|
|
|
|
start = time.time()
|
|
for i, ((name, lazy_tensor), ndarray) in enumerate(
|
|
zip(model.items(), ndarrays)
|
|
):
|
|
elapsed = time.time() - start
|
|
size = " x ".join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
|
padi = len(str(len(model)))
|
|
print(
|
|
f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
|
)
|
|
of.gguf.write_tensor_data(ndarray)
|
|
|
|
of.close()
|
|
|
|
|
|
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
|
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
|
|
|
|
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
|
return GGMLFileType.AllF32
|
|
if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
|
|
return GGMLFileType.MostlyF16
|
|
if output_type_str == "q8_0":
|
|
return GGMLFileType.MostlyQ8_0
|
|
|
|
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
|
|
|
|
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
|
|
|
|
|
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
|
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
|
for (name, tensor) in model.items()}
|
|
|
|
|
|
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
|
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
|
|
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
|
|
|
tmp = model
|
|
|
|
# HF models permut or pack some of the tensors, so we need to undo that
|
|
for i in itertools.count():
|
|
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
|
print(f"Permuting layer {i}")
|
|
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
|
|
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
|
|
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
|
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
|
print(f"Unpacking and permuting layer {i}")
|
|
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
|
|
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
|
|
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
|
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
|
|
else:
|
|
break
|
|
|
|
out: LazyModel = {}
|
|
for name, lazy_tensor in model.items():
|
|
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
|
|
if name_new is None:
|
|
raise Exception(f"Unexpected tensor name: {name}")
|
|
|
|
if tensor_type in should_skip:
|
|
print(f"skipping tensor {name_new}")
|
|
continue
|
|
|
|
print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
|
|
out[name_new] = lazy_tensor
|
|
|
|
return out
|
|
|
|
|
|
def nth_multifile_path(path: Path, n: int) -> Path | None:
|
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
|
the nth path in the model.
|
|
'''
|
|
# Support the following patterns:
|
|
patterns: list[tuple[str, str]] = [
|
|
# - x.00.pth, x.01.pth, etc.
|
|
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
|
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
|
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
|
|
# x.bin, x.bin.1, etc.
|
|
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
|
|
]
|
|
for regex, replacement in patterns:
|
|
if re.search(regex, path.name):
|
|
new_path = path.with_name(re.sub(regex, replacement, path.name))
|
|
if new_path.exists():
|
|
return new_path
|
|
return None
|
|
|
|
|
|
def find_multifile_paths(path: Path) -> list[Path]:
|
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
|
the whole list of paths in the model.
|
|
'''
|
|
ret: list[Path] = []
|
|
for i in itertools.count():
|
|
nth_path = nth_multifile_path(path, i)
|
|
if nth_path is None:
|
|
break
|
|
ret.append(nth_path)
|
|
if not ret:
|
|
# No matches. This should only happen if the file was named, e.g.,
|
|
# foo.0, and there was no file named foo. Oh well, try to process it
|
|
# as a single file.
|
|
return [path]
|
|
return ret
|
|
|
|
|
|
def load_some_model(path: Path) -> ModelPlus:
|
|
'''Load a model of any supported format.'''
|
|
# Be extra-friendly and accept either a file or a directory:
|
|
if path.is_dir():
|
|
# Check if it's a set of safetensors files first
|
|
globs = ["model-00001-of-*.safetensors", "model.safetensors"]
|
|
files = [file for glob in globs for file in path.glob(glob)]
|
|
if not files:
|
|
# Try the PyTorch patterns too, with lower priority
|
|
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
|
files = [file for glob in globs for file in path.glob(glob)]
|
|
if not files:
|
|
raise Exception(f"Can't find model in directory {path}")
|
|
if len(files) > 1:
|
|
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
|
|
path = files[0]
|
|
|
|
paths = find_multifile_paths(path)
|
|
models_plus: list[ModelPlus] = []
|
|
for path in paths:
|
|
print(f"Loading model file {path}")
|
|
models_plus.append(lazy_load_file(path))
|
|
|
|
model_plus = merge_multifile_models(models_plus)
|
|
return model_plus
|
|
|
|
|
|
class VocabFactory:
|
|
def __init__(self, path: Path):
|
|
self.path = path
|
|
self.files = {
|
|
"tokenizer.model": None,
|
|
"vocab.json": None,
|
|
"tokenizer.json": None,
|
|
}
|
|
self._detect_files()
|
|
|
|
def _detect_files(self):
|
|
for file in self.files.keys():
|
|
file_path = self.path / file
|
|
parent_file_path = self.path.parent / file
|
|
if file_path.exists():
|
|
self.files[file] = file_path
|
|
elif parent_file_path.exists():
|
|
self.files[file] = parent_file_path
|
|
|
|
def _select_file(self, vocabtype: Optional[str]) -> Path:
|
|
if vocabtype in ["spm", "bpe"]:
|
|
# For SentencePiece and BPE, return specific files as before
|
|
file_key = "tokenizer.model" if vocabtype == "spm" else "vocab.json"
|
|
if self.files[file_key]:
|
|
return self.files[file_key]
|
|
else:
|
|
raise FileNotFoundError(f"{vocabtype} {file_key} not found.")
|
|
elif vocabtype == "hfft":
|
|
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
|
|
return self.path
|
|
else:
|
|
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
|
|
|
def _create_special_vocab(
|
|
self,
|
|
vocab: Vocab,
|
|
vocabtype: str,
|
|
model_parent_path: Path,
|
|
) -> gguf.SpecialVocab:
|
|
load_merges = vocabtype == "bpe"
|
|
n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
|
|
return gguf.SpecialVocab(
|
|
model_parent_path,
|
|
load_merges=load_merges,
|
|
special_token_types=None, # Predetermined or passed as a parameter
|
|
n_vocab=n_vocab,
|
|
)
|
|
|
|
def load_vocab(
|
|
self, vocabtype: str, model_parent_path: Path
|
|
) -> Tuple[Vocab, gguf.SpecialVocab]:
|
|
path = self._select_file(vocabtype)
|
|
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
|
|
|
added_tokens_path = path.parent / "added_tokens.json"
|
|
if vocabtype == "bpe":
|
|
vocab = BpeVocab(
|
|
path, added_tokens_path if added_tokens_path.exists() else None
|
|
)
|
|
elif vocabtype == "spm":
|
|
vocab = SentencePieceVocab(
|
|
path, added_tokens_path if added_tokens_path.exists() else None
|
|
)
|
|
elif vocabtype == "hfft":
|
|
vocab = HfVocab(
|
|
path, added_tokens_path if added_tokens_path.exists() else None
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
|
special_vocab = self._create_special_vocab(
|
|
vocab,
|
|
vocabtype,
|
|
model_parent_path,
|
|
)
|
|
return vocab, special_vocab
|
|
|
|
|
|
def default_output_file(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
|
namestr = {
|
|
GGMLFileType.AllF32: "f32",
|
|
GGMLFileType.MostlyF16: "f16",
|
|
GGMLFileType.MostlyQ8_0: "q8_0",
|
|
}[file_type]
|
|
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
|
|
if ret in model_paths:
|
|
sys.stderr.write(
|
|
f"Error: Default output path ({ret}) would overwrite the input. "
|
|
"Please explicitly specify a path using --outfile.\n"
|
|
)
|
|
sys.exit(1)
|
|
return ret
|
|
|
|
|
|
def do_dump_model(model_plus: ModelPlus) -> None:
|
|
print(f"model_plus.paths = {model_plus.paths!r}")
|
|
print(f"model_plus.format = {model_plus.format!r}")
|
|
print(f"model_plus.vocab = {model_plus.vocab!r}")
|
|
for name, lazy_tensor in model_plus.model.items():
|
|
print(
|
|
f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}"
|
|
)
|
|
|
|
|
|
def get_argument_parser() -> ArgumentParser:
|
|
output_choices = ["f32", "f16"]
|
|
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
|
# We currently only support Q8_0 output on little endian systems.
|
|
output_choices.append("q8_0")
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="Convert a LLaMa model to a GGML compatible file"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"model",
|
|
type=Path,
|
|
help="Directory containing the model file or the model file itself (*.pth, *.pt, *.bin)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--awq-path",
|
|
type=Path,
|
|
help="Path to the Activation-aware Weight Quantization cache file",
|
|
default=None,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dump",
|
|
action="store_true",
|
|
help="Display the model content without converting it",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dump-single",
|
|
action="store_true",
|
|
help="Display the content of a single model file without conversion",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-only",
|
|
action="store_true",
|
|
help="Extract and output only the vocabulary",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--outtype",
|
|
choices=output_choices,
|
|
help="Output format - note: q8_0 may be very slow (default: f16 or f32 based on input)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-dir",
|
|
type=Path,
|
|
help="Directory containing the tokenizer.model, if separate from the model file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--vocab-type",
|
|
choices=["spm", "bpe", "hfft"], # hfft: Hugging Face Fast Tokenizer
|
|
default="spm",
|
|
help="The vocabulary format used to define the tokenizer model (default: spm)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pad-vocab",
|
|
action="store_true",
|
|
help="Add padding tokens when the model's vocabulary size exceeds the tokenizer metadata",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--outfile",
|
|
type=Path,
|
|
help="Specify the path for the output file (default is based on input)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ctx", type=int, help="Model training context (default is based on input)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--concurrency",
|
|
type=int,
|
|
help=f"Concurrency used for conversion (default: {DEFAULT_CONCURRENCY})",
|
|
default=DEFAULT_CONCURRENCY,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--big-endian",
|
|
action="store_true",
|
|
help="Indicate that the model is executed on a big-endian machine",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def main(argv: Optional[list[str]] = None) -> None:
|
|
parser = get_argument_parser()
|
|
args = parser.parse_args(argv)
|
|
|
|
if args.awq_path:
|
|
sys.path.insert(1, str(Path(__file__).resolve().parent / "awq-py"))
|
|
from awq.apply_awq import add_scale_weights
|
|
|
|
tmp_model_path = args.model / "weighted_model"
|
|
if tmp_model_path.is_dir():
|
|
print(f"{tmp_model_path} exists as a weighted model.")
|
|
else:
|
|
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
|
print("Saving new weighted model ...")
|
|
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
|
print(f"Saved weighted model at {tmp_model_path}.")
|
|
args.model = tmp_model_path
|
|
|
|
if args.dump_single:
|
|
model_plus = lazy_load_file(args.model)
|
|
do_dump_model(model_plus)
|
|
return
|
|
|
|
if not args.vocab_only:
|
|
model_plus = load_some_model(args.model)
|
|
else:
|
|
model_plus = ModelPlus(
|
|
model={}, paths=[args.model / "dummy"], format="none", vocab=None
|
|
)
|
|
|
|
if args.dump:
|
|
do_dump_model(model_plus)
|
|
return
|
|
|
|
endianess = gguf.GGUFEndian.LITTLE
|
|
if args.big_endian:
|
|
endianess = gguf.GGUFEndian.BIG
|
|
|
|
params = Params.load(model_plus)
|
|
if params.n_ctx == -1:
|
|
if args.ctx is None:
|
|
raise Exception(
|
|
"The model doesn't have a context size, and you didn't specify one with --ctx\n"
|
|
"Please specify one with --ctx:\n"
|
|
" - LLaMA v1: --ctx 2048\n"
|
|
" - LLaMA v2: --ctx 4096\n"
|
|
)
|
|
params.n_ctx = args.ctx
|
|
|
|
if args.outtype:
|
|
params.ftype = {
|
|
"f32": GGMLFileType.AllF32,
|
|
"f16": GGMLFileType.MostlyF16,
|
|
"q8_0": GGMLFileType.MostlyQ8_0,
|
|
}[args.outtype]
|
|
|
|
print(f"params = {params}")
|
|
|
|
model_parent_path = model_plus.paths[0].parent
|
|
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
|
vocab_factory = VocabFactory(vocab_path)
|
|
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
|
|
|
|
if args.vocab_only:
|
|
if not args.outfile:
|
|
raise ValueError("need --outfile if using --vocab-only")
|
|
outfile = args.outfile
|
|
OutputFile.write_vocab_only(
|
|
outfile,
|
|
params,
|
|
vocab,
|
|
special_vocab,
|
|
endianess=endianess,
|
|
pad_vocab=args.pad_vocab,
|
|
)
|
|
print(f"Wrote {outfile}")
|
|
return
|
|
|
|
if model_plus.vocab is not None and args.vocab_dir is None:
|
|
vocab = model_plus.vocab
|
|
|
|
model = model_plus.model
|
|
model = convert_model_names(model, params)
|
|
ftype = pick_output_type(model, args.outtype)
|
|
model = convert_to_output_type(model, ftype)
|
|
outfile = args.outfile or default_output_file(model_plus.paths, ftype)
|
|
|
|
params.ftype = ftype
|
|
print(f"Writing {outfile}, format {ftype}")
|
|
|
|
OutputFile.write_all(
|
|
outfile,
|
|
ftype,
|
|
params,
|
|
model,
|
|
vocab,
|
|
special_vocab,
|
|
concurrency=args.concurrency,
|
|
endianess=endianess,
|
|
pad_vocab=args.pad_vocab,
|
|
)
|
|
print(f"Wrote {outfile}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(sys.argv[1:]) # Exclude the first element (script name) from sys.argv
|