mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 12:30:50 +01:00
52ee4540c0
* Create pydantic-models-to-grammar.py * Added some comments for usage * Refactored Grammar Generator Added example and usage instruction. * Update pydantic_models_to_grammar.py * Update pydantic-models-to-grammar-examples.py * Renamed module and imported it. * Update pydantic-models-to-grammar.py * Renamed file and fixed grammar generator issue.
137 lines
5.5 KiB
Python
137 lines
5.5 KiB
Python
# Function calling example using pydantic models.
|
||
|
||
import json
|
||
from enum import Enum
|
||
from typing import Union, Optional
|
||
|
||
import requests
|
||
from pydantic import BaseModel, Field
|
||
|
||
import importlib
|
||
from pydantic_models_to_grammar import generate_gbnf_grammar_and_documentation
|
||
|
||
# Function to get completion on the llama.cpp server with grammar.
|
||
def create_completion(prompt, grammar):
|
||
headers = {"Content-Type": "application/json"}
|
||
data = {"prompt": prompt, "grammar": grammar}
|
||
|
||
response = requests.post("http://127.0.0.1:8080/completion", headers=headers, json=data)
|
||
data = response.json()
|
||
|
||
print(data["content"])
|
||
return data["content"]
|
||
|
||
|
||
# A function for the agent to send a message to the user.
|
||
class SendMessageToUser(BaseModel):
|
||
"""
|
||
Send a message to the User.
|
||
"""
|
||
chain_of_thought: str = Field(..., description="Your chain of thought while sending the message.")
|
||
message: str = Field(..., description="Message you want to send to the user.")
|
||
|
||
def run(self):
|
||
print(self.message)
|
||
|
||
|
||
# Enum for the calculator function.
|
||
class MathOperation(Enum):
|
||
ADD = "add"
|
||
SUBTRACT = "subtract"
|
||
MULTIPLY = "multiply"
|
||
DIVIDE = "divide"
|
||
|
||
|
||
# Very simple calculator tool for the agent.
|
||
class Calculator(BaseModel):
|
||
"""
|
||
Perform a math operation on two numbers.
|
||
"""
|
||
number_one: Union[int, float] = Field(..., description="First number.")
|
||
operation: MathOperation = Field(..., description="Math operation to perform.")
|
||
number_two: Union[int, float] = Field(..., description="Second number.")
|
||
|
||
def run(self):
|
||
if self.operation == MathOperation.ADD:
|
||
return self.number_one + self.number_two
|
||
elif self.operation == MathOperation.SUBTRACT:
|
||
return self.number_one - self.number_two
|
||
elif self.operation == MathOperation.MULTIPLY:
|
||
return self.number_one * self.number_two
|
||
elif self.operation == MathOperation.DIVIDE:
|
||
return self.number_one / self.number_two
|
||
else:
|
||
raise ValueError("Unknown operation.")
|
||
|
||
|
||
# Here the grammar gets generated by passing the available function models to generate_gbnf_grammar_and_documentation function. This also generates a documentation usable by the LLM.
|
||
# pydantic_model_list is the list of pydanitc models
|
||
# outer_object_name is an optional name for an outer object around the actual model object. Like a "function" object with "function_parameters" which contains the actual model object. If None, no outer object will be generated
|
||
# outer_object_content is the name of outer object content.
|
||
# model_prefix is the optional prefix for models in the documentation. (Default="Output Model")
|
||
# fields_prefix is the prefix for the model fields in the documentation. (Default="Output Fields")
|
||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
|
||
pydantic_model_list=[SendMessageToUser, Calculator], outer_object_name="function",
|
||
outer_object_content="function_parameters", model_prefix="Function", fields_prefix="Parameters")
|
||
|
||
print(gbnf_grammar)
|
||
print(documentation)
|
||
|
||
system_message = "You are an advanced AI, tasked to assist the user by calling functions in JSON format. The following are the available functions and their parameters and types:\n\n" + documentation
|
||
|
||
user_message = "What is 42 * 42?"
|
||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
|
||
|
||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
|
||
# This should output something like this:
|
||
# {
|
||
# "function": "calculator",
|
||
# "function_parameters": {
|
||
# "number_one": 42,
|
||
# "operation": "multiply",
|
||
# "number_two": 42
|
||
# }
|
||
# }
|
||
function_dictionary = json.loads(text)
|
||
if function_dictionary["function"] == "calculator":
|
||
function_parameters = {**function_dictionary["function_parameters"]}
|
||
|
||
print(Calculator(**function_parameters).run())
|
||
# This should output: 1764
|
||
|
||
|
||
# A example structured output based on pydantic models. The LLM will create an entry for a Book database out of an unstructured text.
|
||
class Category(Enum):
|
||
"""
|
||
The category of the book.
|
||
"""
|
||
Fiction = "Fiction"
|
||
NonFiction = "Non-Fiction"
|
||
|
||
|
||
class Book(BaseModel):
|
||
"""
|
||
Represents an entry about a book.
|
||
"""
|
||
title: str = Field(..., description="Title of the book.")
|
||
author: str = Field(..., description="Author of the book.")
|
||
published_year: Optional[int] = Field(..., description="Publishing year of the book.")
|
||
keywords: list[str] = Field(..., description="A list of keywords.")
|
||
category: Category = Field(..., description="Category of the book.")
|
||
summary: str = Field(..., description="Summary of the book.")
|
||
|
||
|
||
# We need no additional parameters other than our list of pydantic models.
|
||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation([Book])
|
||
|
||
system_message = "You are an advanced AI, tasked to create a dataset entry in JSON for a Book. The following is the expected output model:\n\n" + documentation
|
||
|
||
text = """The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands."""
|
||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant"
|
||
|
||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
|
||
|
||
json_data = json.loads(text)
|
||
|
||
print(Book(**json_data))
|