Michael Klimenko 35a2ee9143
Remove unused data and add fixes (#5154)
* Remove unused data and add fixes

* Add missing file

* Address review comments

* Replace the scope of vq allocation
2024-01-27 15:25:55 +01:00
..
2024-01-22 15:09:35 +02:00
2023-12-30 23:24:42 +02:00
2023-12-30 23:24:42 +02:00

LLaVA

Currently this implementation supports llava-v1.5 variants.

The pre-converted 7b and 13b models are available.

After API is confirmed, more models will be supported / uploaded.

Usage

Build with cmake or run make llava-cli to build it.

After building, run: ./llava-cli to see the usage. For example:

./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg

note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so.

Model conversion

  • Clone llava-v15-7b`` and clip-vit-large-patch14-336`` locally:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b

git clone https://huggingface.co/openai/clip-vit-large-patch14-336
  1. Use llava-surgery.py to split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
  1. Use convert-image-encoder-to-gguf.py to convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
  1. Use convert.py to convert the LLaMA part of LLaVA to GGUF:
python ./convert.py ../llava-v1.5-7b

Now both the LLaMA part and the image encoder is in the llava-v1.5-7b directory.

TODO

  • Support non-CPU backend for the image encoding part.
  • Support different sampling methods.
  • Support more model variants.