mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 10:58:56 +01:00
c2101a2e90
* mamba : begin working on support for Mamba SSM * mamba : begin figuring out how to (ab)use the kv cache for Mamba * mamba : recurrent inference almost works, but incoherent * mamba : recurrent inference WORKS!!! * convert : optionally use d_conv and d_state from config.json for Mamba * mamba : refactor recurrent conv, resulting in 20% perf increase It's still slower than I'd like, but I did not really optimize `ggml_exp` yet. I also refactored `ggml_exp` to work with tensors with more than 2 dimensions. * ggml : parallelize ggml_exp This results in 8% faster token generation for Mamba-130M. * mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. * mamba : fix self-overlapping view depth stride * mamba : handle batches of more than 1 token This means running Mamba no longer crashes when using the default settings! And probably also slightly faster prompt processing. Both batched and non-batched processing yield the same output. Previously, the state was not cleared when starting a sequence. Next step is to make the KV cache API work as expected for Mamba models. * ggml: add ggml_ssm_scan to help with parallel selective scan If the selective scan was implemented without a custom operator, there would be waaay too many nodes in the graph. For example, for Mamba-130M, with a batch size of 512 (the default), a naive selective scan could add at least 24*512=12288 nodes, which is more than LLAMA_MAX_NODES (8192), and that's only for the smallest Mamba model. So it's much cleaner with a custom operator. Not sure about the name, though. * ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation This will help with performance on CPU if ggml_vec_mul_f32 and ggml_vec_add_f32 are ever optimized with SIMD. * mamba : very basic quantization support Mostly works, but there is currently no difference between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same). Most of the SSM-specific weights can be kept in f32 without affecting the size that much, since they are relatively small. (the linear projection weights are responsible for most of Mamba's size) Too much quantization seems to make the state degrade quite fast, and the model begins to output gibberish. It seems to affect bigger models to a lesser extent than small models, but I'm not sure by how much. Experimentation will be needed to figure out which weights are more important for the _M (and _L?) variants of k-quants for Mamba. * convert : fix wrong name for layer norm weight of offical Mamba models I was using Q-bert/Mamba-* models before, which have a slighlty different naming scheme for the weights. (they start with "model.layers" instead of "backbone.layers") * mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator This increases performance on CPU by around 30% for prompt processing, and by around 20% for text generation. However, it also makes the ggml_exp and ggml_soft_plus operators unused. Whether or not they should be kept will be decided later. * convert : for Mamba, also consider the "MambaLMHeadModel" arch name It's the name of the class of the official implementation, though they don't use it (yet) in the "architectures" field of config.json * mamba : fix vocab size problems with official models The perplexity was waaaay to high for models with a non-round vocab size. Not sure why, but it needed to be fixed in the metadata. Note that this breaks existing GGUF-converted Mamba models, but **only if** the vocab size was not already rounded. * ggml : remove ggml_exp and ggml_soft_plus They did not exist anyway outside of this branch, and since ggml_ssm_scan fused operations together, they are unused. It's always possible to bring them back if needed. * mamba : remove some useless comments No code change. * convert : fix flake8 linter errors * mamba : apply suggestions from code review * mamba : remove unecessary branch for row-wise ssm_state and C multiplication It was previously done to avoid permuting when only one token is processed at a time (like when generating text), but permuting is cheap, and dynamically changing the compute graph is not future-proof. * ggml : in ggml_ssm_scan, use more appropriate asserts * ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32 * mamba : multiple sequences, but one at a time This is a step towards making this Mamba implementation usable with the server example (the way the system prompt is kept when clearing the client slots will need to be changed before this can work, though). The KV cache size for this kind of model is tied to the maximum number of sequences kept at any single time. For now, this number is obtained from n_parallel (plus one, to have an extra sequence to dedicate to the system prompt), but there might be a better way to do this which won't also make the main example use 2 cells even if only 1 is really used. (for this specific case, --parallel 0 helps) Simultaneous sequence processing will probably require changes to ggml_ssm_scan, and possibly a new operator for the conv step. * mamba : support llama_kv_cache_seq_cp This (mis)uses the logic around K shifts, because tokens in a state can't be shifted anyway, and because inp_K_shift has the right shape and type. Using ggml_get_rows is a nice way to do copies, but copy chains can't work. Fortunately, copy chains don't really seem to be used in the examples. Each KV cell is dedicated to the sequence ID corresponding to its own index. * mamba : use a state mask It's cleaner than the previous heuristic of checking for the pos of the first token in the batch. inp_KQ_mask could not be re-used for this, because it has the wrong shape and because it seems more suited to the next step of simultaneous sequence processing (helping with the problem of remembering which token belongs to which sequence(s)/state(s)). * llama : replace the usage of n_ctx with kv_self.size in many places * mamba : use n_tokens directly instead of n_tok * mamba : in comments, properly refer to KV cells instead of slots * mamba : reduce memory usage of ggml_ssm_scan From 290.37 MiB to 140.68 MiB of CPU compute buffer size with Mamba 3B with a batch size of 512. The result tensor of ggml_ssm_scan was previously a big part of the CPU compute buffer size. To make it smaller, it does not contain the intermediate ssm states anymore. Both y and the last ssm state are combined in the result tensor, because it seems only a single tensor can be returned by an operator with the way the graph is built. * mamba : simultaneous sequence processing A batch can now contain tokens from multiple sequences. This is necessary for at least the parallel example, the server example, and the HellaSwag test in the perplexity example. However, for this to be useful, uses of llama_kv_cache_seq_rm/cp will need to be changed to work on whole sequences. * ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba This operator makes it possible to use and update the correct states for each token of the batch in the same way as ggml_ssm_scan. Other solutions which use existing operators would need loops which would add too many nodes to the graph (at least the ones I thought of). Using this operator further reduces the size of the CPU compute buffer from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512. And (at least on CPU), it's a bit faster than before. Note that "ggml_ssm_conv" is probably not the most appropriate name, and it could be changed if a better one is found. * llama : add inp_s_seq as a new input tensor The most convenient implementation to select the correct state (for Mamba) for each token is to directly get the correct index from a tensor. This is why inp_s_seq is storing int32_t and not floats. The other, less convenient way to select the correct state would be to have inp_KQ_mask contain 1.0f for each state used by a token and 0.0f otherwise. This complicates quickly fetching the first used state of a token, and is also less efficient because a whole row of the mask would always need to be read for each token. Using indexes makes it easy to stop searching when there are no more sequences for a token, and the first sequence assigned is always very quickly available (it's the first element of each row). * mamba : support llama_kv_cache_seq_cp copy chains * mamba : support shifting and dividing the kv cache pos * mamba : make the server and parallel examples work with whole sequences A seq_id is dedicated to the system prompt in both cases. * llama : make llama_kv_cache_seq_rm return whether it succeeded or not * mamba : dedicate an input tensor for state copy indices This is cleaner and makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers. * mamba : adapt perplexity, batched, and batched-bench examples * perplexity : limit the max number of sequences This adapts to what the loaded model can provide. * llama : add llama_n_max_seq to get the upper limit for seq_ids Used by the perplexity example. * batched : pass n_parallel to the model's context params This should have been there already, but it wasn't. * batched-bench : reserve sequences to support Mamba * batched-bench : fix tokens being put in wrong sequences Generation quality isn't what's measured in there anyway, but at least using the correct sequences avoids using non-consecutive token positions. * mamba : stop abusing attention metadata This breaks existing converted-to-GGUF Mamba models, but will allow supporting mixed architectures like MambaFormer without needing to break Mamba models. This will also allow changing the size of Mamba's states without having to reconvert models in the future. (e.g. using something else than d_conv - 1 columns for the conv_states will not require breaking existing converted Mamba models again) * gguf-py : add new KV metadata key-value pairs for Mamba * llama : add new metadata key-value pairs for Mamba * llama : guard against divisions by zero when n_head is 0 * mamba : rename "unlimited" KV cache property to "recurrent" * mamba : more correctly update the "used" field of the KV cache * ggml : in ggml_ssm_scan, use a threshold for soft_plus This is how the official Mamba implementation does it, and it's also what torch.nn.Softplus does. * convert : for Mamba, fallback to internal NeoX tokenizer The resulting models are exactly the same as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there. * mamba : support state saving and restoring * ggml : implicitly pass src tensors through dst for Mamba-related ops * mamba : clarify some comments * server : fix cache_tokens not getting correctly resized Otherwise, when the "we have to evaluate at least 1 token" special case was triggered, an extra token was kept in cache_tokens even if it was removed from the KV cache. For Mamba, this caused useless prompt reprocessing when the previous request triggered the above case. * convert-hf : support new metadata keys for Mamba For the models available at https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406 * mamba : rename metadata to be more similar to transformers library This breaks existing converted-to-GGUF models, but the metadata names are more "standard". * mamba : support mamba-*-hf models These models share their token_embd.weight with their output.weight * mamba : add missing spaces This is purely a formatting change. * convert-hf : omit output.weight when identical with token_embd.weight Only for Mamba for now, but it might be relevant for other models eventually. Most Mamba models actually share these two tensors, albeit implicitly. * readme : add Mamba to supported models, and add recent API changes * mamba : move state_seq and state_mask views outside layer loop A few tensors were also missing `struct` in front of `ggml_tensor`.
970 lines
43 KiB
C++
970 lines
43 KiB
C++
#ifndef LLAMA_H
|
||
#define LLAMA_H
|
||
|
||
#include "ggml.h"
|
||
#include "ggml-backend.h"
|
||
|
||
#include <stddef.h>
|
||
#include <stdint.h>
|
||
#include <stdio.h>
|
||
#include <stdbool.h>
|
||
|
||
#ifdef LLAMA_SHARED
|
||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||
# ifdef LLAMA_BUILD
|
||
# define LLAMA_API __declspec(dllexport)
|
||
# else
|
||
# define LLAMA_API __declspec(dllimport)
|
||
# endif
|
||
# else
|
||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||
# endif
|
||
#else
|
||
# define LLAMA_API
|
||
#endif
|
||
|
||
#ifdef __GNUC__
|
||
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||
#elif defined(_MSC_VER)
|
||
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||
#else
|
||
# define DEPRECATED(func, hint) func
|
||
#endif
|
||
|
||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||
|
||
#define LLAMA_MAX_RNG_STATE (64*1024)
|
||
|
||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||
|
||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||
#define LLAMA_SESSION_VERSION 4
|
||
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
//
|
||
// C interface
|
||
//
|
||
// TODO: show sample usage
|
||
//
|
||
|
||
struct llama_model;
|
||
struct llama_context;
|
||
|
||
typedef int32_t llama_pos;
|
||
typedef int32_t llama_token;
|
||
typedef int32_t llama_seq_id;
|
||
|
||
enum llama_vocab_type {
|
||
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
|
||
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
|
||
LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
|
||
};
|
||
|
||
// note: these values should be synchronized with ggml_rope
|
||
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
|
||
enum llama_rope_type {
|
||
LLAMA_ROPE_TYPE_NONE = -1,
|
||
LLAMA_ROPE_TYPE_NORM = 0,
|
||
LLAMA_ROPE_TYPE_NEOX = 2,
|
||
LLAMA_ROPE_TYPE_GLM = 4,
|
||
};
|
||
|
||
enum llama_token_type {
|
||
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
|
||
LLAMA_TOKEN_TYPE_NORMAL = 1,
|
||
LLAMA_TOKEN_TYPE_UNKNOWN = 2,
|
||
LLAMA_TOKEN_TYPE_CONTROL = 3,
|
||
LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
|
||
LLAMA_TOKEN_TYPE_UNUSED = 5,
|
||
LLAMA_TOKEN_TYPE_BYTE = 6,
|
||
};
|
||
|
||
// model file types
|
||
enum llama_ftype {
|
||
LLAMA_FTYPE_ALL_F32 = 0,
|
||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
|
||
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
|
||
|
||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||
};
|
||
|
||
enum llama_rope_scaling_type {
|
||
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
|
||
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
|
||
};
|
||
|
||
enum llama_pooling_type {
|
||
LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
|
||
LLAMA_POOLING_TYPE_NONE = 0,
|
||
LLAMA_POOLING_TYPE_MEAN = 1,
|
||
LLAMA_POOLING_TYPE_CLS = 2,
|
||
};
|
||
|
||
enum llama_split_mode {
|
||
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
|
||
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
|
||
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
|
||
};
|
||
|
||
typedef struct llama_token_data {
|
||
llama_token id; // token id
|
||
float logit; // log-odds of the token
|
||
float p; // probability of the token
|
||
} llama_token_data;
|
||
|
||
typedef struct llama_token_data_array {
|
||
llama_token_data * data;
|
||
size_t size;
|
||
bool sorted;
|
||
} llama_token_data_array;
|
||
|
||
typedef bool (*llama_progress_callback)(float progress, void *ctx);
|
||
|
||
// Input data for llama_decode
|
||
// A llama_batch object can contain input about one or many sequences
|
||
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||
//
|
||
// - token : the token ids of the input (used when embd is NULL)
|
||
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
||
// - pos : the positions of the respective token in the sequence
|
||
// - seq_id : the sequence to which the respective token belongs
|
||
// - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
|
||
//
|
||
typedef struct llama_batch {
|
||
int32_t n_tokens;
|
||
|
||
llama_token * token;
|
||
float * embd;
|
||
llama_pos * pos;
|
||
int32_t * n_seq_id;
|
||
llama_seq_id ** seq_id;
|
||
int8_t * logits; // TODO: rename this to "output"
|
||
|
||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||
// for future-proof code, use the above fields instead and ignore everything below
|
||
//
|
||
// pos[i] = all_pos_0 + i*all_pos_1
|
||
//
|
||
llama_pos all_pos_0; // used if pos == NULL
|
||
llama_pos all_pos_1; // used if pos == NULL
|
||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||
} llama_batch;
|
||
|
||
enum llama_model_kv_override_type {
|
||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||
};
|
||
|
||
struct llama_model_kv_override {
|
||
char key[128];
|
||
enum llama_model_kv_override_type tag;
|
||
union {
|
||
int64_t int_value;
|
||
double float_value;
|
||
bool bool_value;
|
||
};
|
||
};
|
||
|
||
struct llama_model_params {
|
||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||
|
||
// main_gpu interpretation depends on split_mode:
|
||
// LLAMA_SPLIT_NONE: the GPU that is used for the entire model
|
||
// LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
|
||
// LLAMA_SPLIT_LAYER: ignored
|
||
int32_t main_gpu;
|
||
|
||
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||
const float * tensor_split;
|
||
|
||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||
// If the provided progress_callback returns true, model loading continues.
|
||
// If it returns false, model loading is immediately aborted.
|
||
llama_progress_callback progress_callback;
|
||
|
||
// context pointer passed to the progress callback
|
||
void * progress_callback_user_data;
|
||
|
||
// override key-value pairs of the model meta data
|
||
const struct llama_model_kv_override * kv_overrides;
|
||
|
||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||
bool vocab_only; // only load the vocabulary, no weights
|
||
bool use_mmap; // use mmap if possible
|
||
bool use_mlock; // force system to keep model in RAM
|
||
};
|
||
|
||
struct llama_context_params {
|
||
uint32_t seed; // RNG seed, -1 for random
|
||
uint32_t n_ctx; // text context, 0 = from model
|
||
uint32_t n_batch; // prompt processing maximum batch size
|
||
uint32_t n_parallel; // number of parallel sequences (i.e. distinct states for recurrent models)
|
||
uint32_t n_threads; // number of threads to use for generation
|
||
uint32_t n_threads_batch; // number of threads to use for batch processing
|
||
|
||
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
|
||
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
|
||
// (ignored if no pooling layer)
|
||
|
||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||
float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
|
||
float yarn_attn_factor; // YaRN magnitude scaling factor
|
||
float yarn_beta_fast; // YaRN low correction dim
|
||
float yarn_beta_slow; // YaRN high correction dim
|
||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||
float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
|
||
|
||
ggml_backend_sched_eval_callback cb_eval;
|
||
void * cb_eval_user_data;
|
||
|
||
enum ggml_type type_k; // data type for K cache
|
||
enum ggml_type type_v; // data type for V cache
|
||
|
||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
||
bool embeddings; // if true, extract embeddings (together with logits)
|
||
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
||
|
||
// Abort callback
|
||
// if it returns true, execution of llama_decode() will be aborted
|
||
// currently works only with CPU execution
|
||
ggml_abort_callback abort_callback;
|
||
void * abort_callback_data;
|
||
};
|
||
|
||
// model quantization parameters
|
||
typedef struct llama_model_quantize_params {
|
||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||
bool quantize_output_tensor; // quantize output.weight
|
||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
|
||
void * imatrix; // pointer to importance matrix data
|
||
} llama_model_quantize_params;
|
||
|
||
// grammar types
|
||
struct llama_grammar;
|
||
|
||
// grammar element type
|
||
enum llama_gretype {
|
||
// end of rule definition
|
||
LLAMA_GRETYPE_END = 0,
|
||
|
||
// start of alternate definition for rule
|
||
LLAMA_GRETYPE_ALT = 1,
|
||
|
||
// non-terminal element: reference to rule
|
||
LLAMA_GRETYPE_RULE_REF = 2,
|
||
|
||
// terminal element: character (code point)
|
||
LLAMA_GRETYPE_CHAR = 3,
|
||
|
||
// inverse char(s) ([^a], [^a-b] [^abc])
|
||
LLAMA_GRETYPE_CHAR_NOT = 4,
|
||
|
||
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||
// be an inclusive range ([a-z])
|
||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
||
|
||
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
||
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||
LLAMA_GRETYPE_CHAR_ALT = 6,
|
||
};
|
||
|
||
typedef struct llama_grammar_element {
|
||
enum llama_gretype type;
|
||
uint32_t value; // Unicode code point or rule ID
|
||
} llama_grammar_element;
|
||
|
||
// performance timing information
|
||
struct llama_timings {
|
||
double t_start_ms;
|
||
double t_end_ms;
|
||
double t_load_ms;
|
||
double t_sample_ms;
|
||
double t_p_eval_ms;
|
||
double t_eval_ms;
|
||
|
||
int32_t n_sample;
|
||
int32_t n_p_eval;
|
||
int32_t n_eval;
|
||
};
|
||
|
||
// used in chat template
|
||
typedef struct llama_chat_message {
|
||
const char * role;
|
||
const char * content;
|
||
} llama_chat_message;
|
||
|
||
// Helpers for getting default parameters
|
||
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||
|
||
// Initialize the llama + ggml backend
|
||
// If numa is true, use NUMA optimizations
|
||
// Call once at the start of the program
|
||
LLAMA_API void llama_backend_init(void);
|
||
|
||
//optional:
|
||
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
|
||
|
||
// Call once at the end of the program - currently only used for MPI
|
||
LLAMA_API void llama_backend_free(void);
|
||
|
||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||
const char * path_model,
|
||
struct llama_model_params params);
|
||
|
||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||
|
||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||
struct llama_model * model,
|
||
struct llama_context_params params);
|
||
|
||
// Frees all allocated memory
|
||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||
|
||
LLAMA_API int64_t llama_time_us(void);
|
||
|
||
LLAMA_API size_t llama_max_devices(void);
|
||
|
||
LLAMA_API bool llama_supports_mmap (void);
|
||
LLAMA_API bool llama_supports_mlock (void);
|
||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||
|
||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||
|
||
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
|
||
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
|
||
LLAMA_API uint32_t llama_n_max_seq (const struct llama_context * ctx);
|
||
|
||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
|
||
|
||
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
|
||
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
|
||
LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
|
||
|
||
// Get the model's RoPE frequency scaling factor
|
||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||
|
||
// Functions to access the model's GGUF metadata scalar values
|
||
// - The functions return the length of the string on success, or -1 on failure
|
||
// - The output string is always null-terminated and cleared on failure
|
||
// - GGUF array values are not supported by these functions
|
||
|
||
// Get metadata value as a string by key name
|
||
LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
|
||
|
||
// Get the number of metadata key/value pairs
|
||
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
|
||
|
||
// Get metadata key name by index
|
||
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||
|
||
// Get metadata value as a string by index
|
||
LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
|
||
|
||
// Get a string describing the model type
|
||
LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||
|
||
// Returns the total size of all the tensors in the model in bytes
|
||
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||
|
||
// Returns the total number of parameters in the model
|
||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||
|
||
// Get a llama model tensor
|
||
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
||
|
||
// Returns 0 on success
|
||
LLAMA_API uint32_t llama_model_quantize(
|
||
const char * fname_inp,
|
||
const char * fname_out,
|
||
const llama_model_quantize_params * params);
|
||
|
||
// Apply a LoRA adapter to a loaded model
|
||
// path_base_model is the path to a higher quality model to use as a base for
|
||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||
// will be applied on top of the previous one
|
||
// Returns 0 on success
|
||
LLAMA_API int32_t llama_model_apply_lora_from_file(
|
||
const struct llama_model * model,
|
||
const char * path_lora,
|
||
float scale,
|
||
const char * path_base_model,
|
||
int32_t n_threads);
|
||
|
||
//
|
||
// KV cache
|
||
//
|
||
|
||
// Information associated with an individual cell in the KV cache view.
|
||
struct llama_kv_cache_view_cell {
|
||
// The position for this cell. Takes KV cache shifts into account.
|
||
// May be negative if the cell is not populated.
|
||
llama_pos pos;
|
||
};
|
||
|
||
// An updateable view of the KV cache.
|
||
struct llama_kv_cache_view {
|
||
// Number of KV cache cells. This will be the same as the context size.
|
||
int32_t n_cells;
|
||
|
||
// Maximum number of sequences that can exist in a cell. It's not an error
|
||
// if there are more sequences in a cell than this value, however they will
|
||
// not be visible in the view cells_sequences.
|
||
int32_t n_max_seq;
|
||
|
||
// Number of tokens in the cache. For example, if there are two populated
|
||
// cells, the first with 1 sequence id in it and the second with 2 sequence
|
||
// ids then you'll have 3 tokens.
|
||
int32_t token_count;
|
||
|
||
// Number of populated cache cells.
|
||
int32_t used_cells;
|
||
|
||
// Maximum contiguous empty slots in the cache.
|
||
int32_t max_contiguous;
|
||
|
||
// Index to the start of the max_contiguous slot range. Can be negative
|
||
// when cache is full.
|
||
int32_t max_contiguous_idx;
|
||
|
||
// Information for an individual cell.
|
||
struct llama_kv_cache_view_cell * cells;
|
||
|
||
// The sequences for each cell. There will be n_max_seq items per cell.
|
||
llama_seq_id * cells_sequences;
|
||
};
|
||
|
||
// Create an empty KV cache view. (use only for debugging purposes)
|
||
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
|
||
|
||
// Free a KV cache view. (use only for debugging purposes)
|
||
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
|
||
|
||
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
|
||
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
|
||
|
||
// Returns the number of tokens in the KV cache (slow, use only for debug)
|
||
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
||
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||
|
||
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
|
||
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
|
||
|
||
// Clear the KV cache
|
||
LLAMA_API void llama_kv_cache_clear(
|
||
struct llama_context * ctx);
|
||
|
||
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
// seq_id < 0 : match any sequence
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API bool llama_kv_cache_seq_rm(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1);
|
||
|
||
// Copy all tokens that belong to the specified sequence to another sequence
|
||
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API void llama_kv_cache_seq_cp(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id_src,
|
||
llama_seq_id seq_id_dst,
|
||
llama_pos p0,
|
||
llama_pos p1);
|
||
|
||
// Removes all tokens that do not belong to the specified sequence
|
||
LLAMA_API void llama_kv_cache_seq_keep(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id);
|
||
|
||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||
// - lazily on next llama_decode()
|
||
// - explicitly with llama_kv_cache_update()
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API void llama_kv_cache_seq_add(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1,
|
||
llama_pos delta);
|
||
|
||
// Integer division of the positions by factor of `d > 1`
|
||
// If the KV cache is RoPEd, the KV data is updated accordingly:
|
||
// - lazily on next llama_decode()
|
||
// - explicitly with llama_kv_cache_update()
|
||
// p0 < 0 : [0, p1]
|
||
// p1 < 0 : [p0, inf)
|
||
LLAMA_API void llama_kv_cache_seq_div(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1,
|
||
int d);
|
||
|
||
// Returns the largest position present in the KV cache for the specified sequence
|
||
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
|
||
struct llama_context * ctx,
|
||
llama_seq_id seq_id);
|
||
|
||
// Defragment the KV cache
|
||
// This will be applied:
|
||
// - lazily on next llama_decode()
|
||
// - explicitly with llama_kv_cache_update()
|
||
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
|
||
|
||
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
|
||
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
|
||
|
||
//
|
||
// State / sessions
|
||
//
|
||
|
||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
||
// and kv_cache) - will often be smaller after compacting tokens
|
||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
||
|
||
// Copies the state to the specified destination address.
|
||
// Destination needs to have allocated enough memory.
|
||
// Returns the number of bytes copied
|
||
LLAMA_API size_t llama_copy_state_data(
|
||
struct llama_context * ctx,
|
||
uint8_t * dst);
|
||
|
||
// Set the state reading from the specified address
|
||
// Returns the number of bytes read
|
||
LLAMA_API size_t llama_set_state_data(
|
||
struct llama_context * ctx,
|
||
const uint8_t * src);
|
||
|
||
// Save/load session file
|
||
LLAMA_API bool llama_load_session_file(
|
||
struct llama_context * ctx,
|
||
const char * path_session,
|
||
llama_token * tokens_out,
|
||
size_t n_token_capacity,
|
||
size_t * n_token_count_out);
|
||
|
||
LLAMA_API bool llama_save_session_file(
|
||
struct llama_context * ctx,
|
||
const char * path_session,
|
||
const llama_token * tokens,
|
||
size_t n_token_count);
|
||
|
||
//
|
||
// Decoding
|
||
//
|
||
|
||
// Return batch for single sequence of tokens starting at pos_0
|
||
//
|
||
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
|
||
//
|
||
LLAMA_API struct llama_batch llama_batch_get_one(
|
||
llama_token * tokens,
|
||
int32_t n_tokens,
|
||
llama_pos pos_0,
|
||
llama_seq_id seq_id);
|
||
|
||
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||
// Each token can be assigned up to n_seq_max sequence ids
|
||
// The batch has to be freed with llama_batch_free()
|
||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||
// The rest of the llama_batch members are allocated with size n_tokens
|
||
// All members are left uninitialized
|
||
LLAMA_API struct llama_batch llama_batch_init(
|
||
int32_t n_tokens,
|
||
int32_t embd,
|
||
int32_t n_seq_max);
|
||
|
||
// Frees a batch of tokens allocated with llama_batch_init()
|
||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||
|
||
// Positive return values does not mean a fatal error, but rather a warning.
|
||
// 0 - success
|
||
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
||
// < 0 - error
|
||
LLAMA_API int32_t llama_decode(
|
||
struct llama_context * ctx,
|
||
struct llama_batch batch);
|
||
|
||
// Set the number of threads used for decoding
|
||
// n_threads is the number of threads used for generation (single token)
|
||
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||
|
||
// Set abort callback
|
||
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||
|
||
// Token logits obtained from the last call to llama_decode()
|
||
// The logits for the last token are stored in the last row
|
||
// Logits for which llama_batch.logits[i] == 0 are undefined
|
||
// Rows: n_tokens provided with llama_batch
|
||
// Cols: n_vocab
|
||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||
|
||
// Logits for the ith token. Equivalent to:
|
||
// llama_get_logits(ctx) + i*n_vocab
|
||
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
||
|
||
// Get all output token embeddings
|
||
// shape: [n_tokens*n_embd] (1-dimensional)
|
||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||
|
||
// Get the embeddings for the ith token
|
||
// llama_get_embeddings(ctx) + i*n_embd
|
||
// shape: [n_embd] (1-dimensional)
|
||
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
|
||
|
||
// Get the embeddings for a sequence id
|
||
// Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
|
||
// shape: [n_embd] (1-dimensional)
|
||
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
|
||
|
||
//
|
||
// Vocab
|
||
//
|
||
|
||
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
|
||
|
||
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
|
||
|
||
LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
|
||
|
||
// Special tokens
|
||
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
|
||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||
|
||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||
LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
|
||
|
||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||
LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
|
||
|
||
// codellama infill tokens
|
||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||
LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
|
||
LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
|
||
|
||
//
|
||
// Tokenization
|
||
//
|
||
|
||
/// @details Convert the provided text into tokens.
|
||
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||
/// @return Returns the number of tokens on success, no more than n_max_tokens
|
||
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
||
/// Does not insert a leading space.
|
||
LLAMA_API int32_t llama_tokenize(
|
||
const struct llama_model * model,
|
||
const char * text,
|
||
int32_t text_len,
|
||
llama_token * tokens,
|
||
int32_t n_max_tokens,
|
||
bool add_bos,
|
||
bool special);
|
||
|
||
// Token Id -> Piece.
|
||
// Uses the vocabulary in the provided context.
|
||
// Does not write null terminator to the buffer.
|
||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||
LLAMA_API int32_t llama_token_to_piece(
|
||
const struct llama_model * model,
|
||
llama_token token,
|
||
char * buf,
|
||
int32_t length);
|
||
|
||
/// Apply chat template. Inspired by hf apply_chat_template() on python.
|
||
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
|
||
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
|
||
/// @param chat Pointer to a list of multiple llama_chat_message
|
||
/// @param n_msg Number of llama_chat_message in this chat
|
||
/// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
|
||
/// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
|
||
/// @param length The size of the allocated buffer
|
||
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
|
||
LLAMA_API int32_t llama_chat_apply_template(
|
||
const struct llama_model * model,
|
||
const char * tmpl,
|
||
const struct llama_chat_message * chat,
|
||
size_t n_msg,
|
||
bool add_ass,
|
||
char * buf,
|
||
int32_t length);
|
||
|
||
//
|
||
// Grammar
|
||
//
|
||
|
||
LLAMA_API struct llama_grammar * llama_grammar_init(
|
||
const llama_grammar_element ** rules,
|
||
size_t n_rules,
|
||
size_t start_rule_index);
|
||
|
||
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||
|
||
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
||
|
||
//
|
||
// Sampling functions
|
||
//
|
||
|
||
// Sets the current rng seed.
|
||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||
|
||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||
LLAMA_API void llama_sample_repetition_penalties(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
const llama_token * last_tokens,
|
||
size_t penalty_last_n,
|
||
float penalty_repeat,
|
||
float penalty_freq,
|
||
float penalty_present);
|
||
|
||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||
/// @param logits Logits extracted from the original generation context.
|
||
/// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||
/// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||
LLAMA_API void llama_sample_apply_guidance(
|
||
struct llama_context * ctx,
|
||
float * logits,
|
||
float * logits_guidance,
|
||
float scale);
|
||
|
||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||
LLAMA_API void llama_sample_softmax(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
|
||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||
LLAMA_API void llama_sample_top_k(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
int32_t k,
|
||
size_t min_keep);
|
||
|
||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||
LLAMA_API void llama_sample_top_p(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float p,
|
||
size_t min_keep);
|
||
|
||
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
|
||
LLAMA_API void llama_sample_min_p(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float p,
|
||
size_t min_keep);
|
||
|
||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||
LLAMA_API void llama_sample_tail_free(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float z,
|
||
size_t min_keep);
|
||
|
||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||
LLAMA_API void llama_sample_typical(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float p,
|
||
size_t min_keep);
|
||
|
||
/// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
|
||
LLAMA_API void llama_sample_entropy(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates_p,
|
||
float min_temp,
|
||
float max_temp,
|
||
float exponent_val);
|
||
|
||
LLAMA_API void llama_sample_temp(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float temp);
|
||
|
||
/// @details Apply constraints from grammar
|
||
LLAMA_API void llama_sample_grammar(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
const struct llama_grammar * grammar);
|
||
|
||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
LLAMA_API llama_token llama_sample_token_mirostat(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float tau,
|
||
float eta,
|
||
int32_t m,
|
||
float * mu);
|
||
|
||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||
LLAMA_API llama_token llama_sample_token_mirostat_v2(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates,
|
||
float tau,
|
||
float eta,
|
||
float * mu);
|
||
|
||
/// @details Selects the token with the highest probability.
|
||
/// Does not compute the token probabilities. Use llama_sample_softmax() instead.
|
||
LLAMA_API llama_token llama_sample_token_greedy(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
|
||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||
LLAMA_API llama_token llama_sample_token(
|
||
struct llama_context * ctx,
|
||
llama_token_data_array * candidates);
|
||
|
||
/// @details Accepts the sampled token into the grammar
|
||
LLAMA_API void llama_grammar_accept_token(
|
||
struct llama_context * ctx,
|
||
struct llama_grammar * grammar,
|
||
llama_token token);
|
||
|
||
//
|
||
// Beam search
|
||
//
|
||
|
||
struct llama_beam_view {
|
||
const llama_token * tokens;
|
||
|
||
size_t n_tokens;
|
||
float p; // Cumulative beam probability (renormalized relative to all beams)
|
||
bool eob; // Callback should set this to true when a beam is at end-of-beam.
|
||
};
|
||
|
||
// Passed to beam_search_callback function.
|
||
// Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
|
||
// (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
|
||
// These pointers are valid only during the synchronous callback, so should not be saved.
|
||
struct llama_beams_state {
|
||
struct llama_beam_view * beam_views;
|
||
|
||
size_t n_beams; // Number of elements in beam_views[].
|
||
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
|
||
bool last_call; // True iff this is the last callback invocation.
|
||
};
|
||
|
||
// Type of pointer to the beam_search_callback function.
|
||
// void* callback_data is any custom data passed to llama_beam_search, that is subsequently
|
||
// passed back to beam_search_callback. This avoids having to use global variables in the callback.
|
||
typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
|
||
|
||
/// @details Deterministically returns entire sentence constructed by a beam search.
|
||
/// @param ctx Pointer to the llama_context.
|
||
/// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
|
||
/// @param callback_data A pointer that is simply passed back to callback.
|
||
/// @param n_beams Number of beams to use.
|
||
/// @param n_past Number of tokens already evaluated.
|
||
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||
LLAMA_API void llama_beam_search(
|
||
struct llama_context * ctx,
|
||
llama_beam_search_callback_fn_t callback,
|
||
void * callback_data,
|
||
size_t n_beams,
|
||
int32_t n_past,
|
||
int32_t n_predict);
|
||
|
||
// Performance information
|
||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||
|
||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||
|
||
// Print system information
|
||
LLAMA_API const char * llama_print_system_info(void);
|
||
|
||
// Set callback for all future logging events.
|
||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
|
||
|
||
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
|
||
|
||
#ifdef __cplusplus
|
||
}
|
||
#endif
|
||
|
||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||
#ifdef LLAMA_API_INTERNAL
|
||
|
||
#include <vector>
|
||
#include <string>
|
||
|
||
struct ggml_tensor;
|
||
|
||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
||
struct llama_context * ctx
|
||
);
|
||
|
||
#endif // LLAMA_API_INTERNAL
|
||
|
||
#endif // LLAMA_H
|