bmwl f486f6e1e5
ggml : add numa options (#5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 11:31:07 +02:00
..
2024-02-16 11:31:07 +02:00
2024-01-19 15:24:47 +02:00

llama.cpp/examples/imatrix

Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantum models. More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861

Usage

./imatrix -m <some_fp_model> -f <some_training_data> [-o <output_file>] [--verbosity <verbosity_level>]
        [-ofreq num_chunks] [-ow <0 or 1>] [other common params]

Here -m with a model name and -f with a file containing training data (such as e.g. wiki.train.raw) are mandatory. The parameters in square brackets are optional and have the following meaning:

  • -o (or --output-file) specifies the name of the file where the computed data will be stored. If missing imatrix.dat is used.
  • --verbosity specifies the verbosity level. If set to 0, no output other than the perplexity of the processed chunks will be generated. If set to 1, each time the results are saved a message is written to stderr. If >=2, a message is output each time data is collected for any tensor. Default verbosity level is 1.
  • -ofreq (or --output-frequency) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)
  • -ow (or --output-weight) specifies if data will be collected for the output.weight tensor. My experience is that it is better to not utilize the importance matrix when quantizing output.weight, so this is set to false by default.

For faster computation, make sure to use GPU offloading via the -ngl argument

Example

LLAMA_CUBLAS=1 make -j

# generate importance matrix (imatrix.dat)
./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99

# use the imatrix to perform a Q4_K_M quantization
./quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m