mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 10:58:56 +01:00
f30ea47a87
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs ggml-ci * server : add -ub, --ubatch-size parameter * fix server embedding test * llama : fix Mamba inference for pipeline parallelism Tested to work correctly with both `main` and `parallel` examples. * llama : limit max batch size to n_batch * add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism default increase to 4 (from 2) changing this value may improve performance for some systems, but increases memory usage * fix hip build * fix sycl build (disable cpy_tensor_async) * fix hip build * llama : limit n_batch and n_ubatch to n_ctx during context creation * llama : fix norm backend * batched-bench : sync after decode * swiftui : sync after decode * ggml : allow ggml_get_rows to use multiple threads if they are available * check n_ubatch >= n_tokens with non-casual attention * llama : do not limit n_batch to n_ctx with non-casual attn * server : construct batch with size of llama_n_batch * ggml_backend_cpu_graph_compute : fix return value when alloc fails * llama : better n_batch and n_ubatch comment * fix merge * small fix * reduce default n_batch to 2048 --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
137 lines
6.5 KiB
C
137 lines
6.5 KiB
C
#pragma once
|
|
|
|
// ggml-backend internal header
|
|
|
|
#include "ggml-backend.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
//
|
|
// Backend buffer
|
|
//
|
|
|
|
// buffer type
|
|
typedef void * ggml_backend_buffer_type_context_t;
|
|
|
|
struct ggml_backend_buffer_type_i {
|
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
|
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
|
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
|
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
|
|
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
|
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
|
// check if tensor data is in host memory
|
|
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
|
|
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
|
};
|
|
|
|
struct ggml_backend_buffer_type {
|
|
struct ggml_backend_buffer_type_i iface;
|
|
ggml_backend_buffer_type_context_t context;
|
|
};
|
|
|
|
// buffer
|
|
typedef void * ggml_backend_buffer_context_t;
|
|
|
|
struct ggml_backend_buffer_i {
|
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
|
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
|
|
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
|
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
|
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
|
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
|
};
|
|
|
|
struct ggml_backend_buffer {
|
|
struct ggml_backend_buffer_i iface;
|
|
ggml_backend_buffer_type_t buft;
|
|
ggml_backend_buffer_context_t context;
|
|
size_t size;
|
|
enum ggml_backend_buffer_usage usage;
|
|
};
|
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
|
ggml_backend_buffer_type_t buft,
|
|
struct ggml_backend_buffer_i iface,
|
|
ggml_backend_buffer_context_t context,
|
|
size_t size);
|
|
|
|
// do not use directly, use ggml_backend_tensor_copy instead
|
|
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// buffer that contains a collection of buffers
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
|
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
|
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
|
|
|
//
|
|
// Backend
|
|
//
|
|
|
|
typedef void * ggml_backend_context_t;
|
|
|
|
struct ggml_backend_i {
|
|
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
|
|
|
|
void (*GGML_CALL free)(ggml_backend_t backend);
|
|
|
|
// buffer allocation
|
|
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
|
|
|
|
// (optional) asynchronous tensor data access
|
|
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// (optional) complete all pending operations
|
|
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
|
|
|
// compute graph with a plan (not used currently)
|
|
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
|
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
|
|
// compute graph with a plan
|
|
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
// compute graph without a plan (async)
|
|
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
|
|
// check if the backend supports an operation
|
|
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
|
|
|
// (optional) event synchronization
|
|
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
|
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
|
void (*GGML_CALL event_record) (ggml_backend_event_t event);
|
|
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
|
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
|
|
};
|
|
|
|
struct ggml_backend {
|
|
ggml_guid_t guid;
|
|
|
|
struct ggml_backend_i iface;
|
|
ggml_backend_context_t context;
|
|
};
|
|
|
|
struct ggml_backend_event {
|
|
ggml_backend_t backend;
|
|
void * context;
|
|
};
|
|
|
|
//
|
|
// Backend registry
|
|
//
|
|
|
|
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
|
|
|
|
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|