mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 10:58:56 +01:00
5dc9dd7152
* Add Command R Plus GGUF * Add Command R Plus GGUF * Loading works up to LayerNorm2D * Export new tensors in 1D so they are not quantized. * Fix embedding layer based on Noeda's example * Whitespace * Add line * Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda) * dranger003: Fix block index overflow in CUDA dequantizing. * Reverted blocked multiplication code as it still has issues and could affect other Llama arches * export norms as f32 * fix overflow issues during quant and other cleanup * Type convention Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * dranger003: Fix more int overflow during quant. --------- Co-authored-by: S <seast@Ss-Mac-Studio.local> Co-authored-by: S <s@example.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
552 lines
20 KiB
Plaintext
552 lines
20 KiB
Plaintext
#pragma once
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-cuda.h"
|
|
|
|
#include <memory>
|
|
|
|
#if defined(GGML_USE_HIPBLAS)
|
|
#define GGML_COMMON_DECL_HIP
|
|
#define GGML_COMMON_IMPL_HIP
|
|
#else
|
|
#define GGML_COMMON_DECL_CUDA
|
|
#define GGML_COMMON_IMPL_CUDA
|
|
#endif
|
|
#include "ggml-common.h"
|
|
|
|
#include <cstdio>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cfloat>
|
|
#include <string>
|
|
|
|
#if defined(GGML_USE_HIPBLAS)
|
|
#include <hip/hip_runtime.h>
|
|
#include <hipblas/hipblas.h>
|
|
#include <hip/hip_fp16.h>
|
|
#ifdef __HIP_PLATFORM_AMD__
|
|
// for rocblas_initialize()
|
|
#include "rocblas/rocblas.h"
|
|
#endif // __HIP_PLATFORM_AMD__
|
|
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
|
|
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
|
|
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
|
|
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
|
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
|
|
#define CUBLAS_OP_N HIPBLAS_OP_N
|
|
#define CUBLAS_OP_T HIPBLAS_OP_T
|
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
|
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
|
#define CUDA_R_16F HIPBLAS_R_16F
|
|
#define CUDA_R_32F HIPBLAS_R_32F
|
|
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
|
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
|
#define cublasCreate hipblasCreate
|
|
#define cublasDestroy hipblasDestroy
|
|
#define cublasGemmEx hipblasGemmEx
|
|
#define cublasGemmBatchedEx hipblasGemmBatchedEx
|
|
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
|
|
#define cublasHandle_t hipblasHandle_t
|
|
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
|
|
#define cublasSetStream hipblasSetStream
|
|
#define cublasSgemm hipblasSgemm
|
|
#define cublasStatus_t hipblasStatus_t
|
|
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
|
|
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
|
|
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
|
|
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
|
|
#define cudaDeviceProp hipDeviceProp_t
|
|
#define cudaDeviceSynchronize hipDeviceSynchronize
|
|
#define cudaError_t hipError_t
|
|
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
|
|
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
|
|
#define cudaEventCreateWithFlags hipEventCreateWithFlags
|
|
#define cudaEventDisableTiming hipEventDisableTiming
|
|
#define cudaEventRecord hipEventRecord
|
|
#define cudaEventSynchronize hipEventSynchronize
|
|
#define cudaEvent_t hipEvent_t
|
|
#define cudaEventDestroy hipEventDestroy
|
|
#define cudaFree hipFree
|
|
#define cudaFreeHost hipHostFree
|
|
#define cudaGetDevice hipGetDevice
|
|
#define cudaGetDeviceCount hipGetDeviceCount
|
|
#define cudaGetDeviceProperties hipGetDeviceProperties
|
|
#define cudaGetErrorString hipGetErrorString
|
|
#define cudaGetLastError hipGetLastError
|
|
#define cudaHostRegister hipHostRegister
|
|
#define cudaHostRegisterPortable hipHostRegisterPortable
|
|
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
|
|
#define cudaHostUnregister hipHostUnregister
|
|
#define cudaLaunchHostFunc hipLaunchHostFunc
|
|
#ifdef GGML_HIP_UMA
|
|
#define cudaMalloc hipMallocManaged
|
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
|
|
#else
|
|
#define cudaMalloc hipMalloc
|
|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
|
|
#endif
|
|
#define cudaMemcpy hipMemcpy
|
|
#define cudaMemcpyAsync hipMemcpyAsync
|
|
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
|
|
#define cudaMemcpy2DAsync hipMemcpy2DAsync
|
|
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
|
|
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
|
|
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
|
|
#define cudaMemcpyKind hipMemcpyKind
|
|
#define cudaMemset hipMemset
|
|
#define cudaMemsetAsync hipMemsetAsync
|
|
#define cudaMemGetInfo hipMemGetInfo
|
|
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
|
#define cudaSetDevice hipSetDevice
|
|
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
|
#define cudaStreamDestroy hipStreamDestroy
|
|
#define cudaStreamFireAndForget hipStreamFireAndForget
|
|
#define cudaStreamNonBlocking hipStreamNonBlocking
|
|
#define cudaStreamPerThread hipStreamPerThread
|
|
#define cudaStreamSynchronize hipStreamSynchronize
|
|
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
|
|
#define cudaStream_t hipStream_t
|
|
#define cudaSuccess hipSuccess
|
|
#define __trap abort
|
|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
|
|
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
|
|
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
|
|
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
|
|
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
|
|
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
|
|
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
|
|
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
|
|
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
|
|
#else
|
|
#include <cuda_runtime.h>
|
|
#include <cuda.h>
|
|
#include <cublas_v2.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#if CUDART_VERSION < 11020
|
|
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
|
|
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
|
|
#define CUBLAS_COMPUTE_16F CUDA_R_16F
|
|
#define CUBLAS_COMPUTE_32F CUDA_R_32F
|
|
#define cublasComputeType_t cudaDataType_t
|
|
#endif // CUDART_VERSION < 11020
|
|
|
|
#endif // defined(GGML_USE_HIPBLAS)
|
|
|
|
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
|
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
|
|
|
#define WARP_SIZE 32
|
|
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
|
|
|
#define CC_PASCAL 600
|
|
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
|
#define CC_VOLTA 700
|
|
#define CC_OFFSET_AMD 1000000
|
|
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
|
|
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
|
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
|
|
|
|
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
|
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
|
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
|
// - 7B quantum model: +100-200 MB
|
|
// - 13B quantum model: +200-400 MB
|
|
//
|
|
//#define GGML_CUDA_FORCE_MMQ
|
|
|
|
// TODO: improve this to be correct for more hardware
|
|
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
|
|
#if !defined(GGML_CUDA_FORCE_MMQ)
|
|
#define CUDA_USE_TENSOR_CORES
|
|
#endif
|
|
|
|
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
|
|
#define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
|
|
|
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#define GGML_CUDA_MAX_STREAMS 8
|
|
|
|
[[noreturn]]
|
|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
|
|
|
#define CUDA_CHECK_GEN(err, success, error_fn) \
|
|
do { \
|
|
auto err_ = (err); \
|
|
if (err_ != (success)) { \
|
|
ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
|
|
|
|
#if CUDART_VERSION >= 12000
|
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
|
return cublasGetStatusString(err);
|
|
}
|
|
#else
|
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
|
switch (err) {
|
|
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
|
|
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
|
|
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
|
|
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
|
|
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
|
|
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
|
|
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
|
|
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
|
|
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
|
|
default: return "unknown error";
|
|
}
|
|
}
|
|
#endif // CUDART_VERSION >= 12000
|
|
|
|
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
|
|
|
#if !defined(GGML_USE_HIPBLAS)
|
|
static const char * cu_get_error_str(CUresult err) {
|
|
const char * err_str;
|
|
cuGetErrorString(err, &err_str);
|
|
return err_str;
|
|
}
|
|
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
|
#endif
|
|
|
|
#if CUDART_VERSION >= 11100
|
|
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
|
#else
|
|
#define GGML_CUDA_ASSUME(x)
|
|
#endif // CUDART_VERSION >= 11100
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
typedef half dfloat; // dequantize float
|
|
typedef half2 dfloat2;
|
|
#else
|
|
typedef float dfloat; // dequantize float
|
|
typedef float2 dfloat2;
|
|
#endif //GGML_CUDA_F16
|
|
|
|
[[noreturn]]
|
|
static __device__ void no_device_code(
|
|
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
|
|
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
|
file_name, line, function_name, arch);
|
|
GGML_UNUSED(arch_list);
|
|
#else
|
|
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
|
file_name, line, function_name, arch, arch_list);
|
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
__trap();
|
|
|
|
GGML_UNUSED(no_device_code); // suppress unused function warning
|
|
}
|
|
|
|
#ifdef __CUDA_ARCH__
|
|
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
|
#else
|
|
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
|
|
#endif // __CUDA_ARCH__
|
|
|
|
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
|
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
|
}
|
|
return a;
|
|
#else
|
|
GGML_UNUSED(a);
|
|
NO_DEVICE_CODE;
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
|
}
|
|
#endif // GGML_CUDA_F16
|
|
|
|
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
|
#pragma unroll
|
|
for (int mask = 16; mask > 0; mask >>= 1) {
|
|
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
|
//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
|
//#pragma unroll
|
|
// for (int mask = 16; mask > 0; mask >>= 1) {
|
|
// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
|
// }
|
|
// return x;
|
|
//#else
|
|
// GGML_UNUSED(x);
|
|
// NO_DEVICE_CODE;
|
|
//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
|
|
//}
|
|
|
|
|
|
#if defined(GGML_USE_HIPBLAS)
|
|
#define __CUDA_ARCH__ 1300
|
|
|
|
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
|
defined(__gfx1150__) || defined(__gfx1151__)
|
|
#define RDNA3
|
|
#endif
|
|
|
|
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
|
|
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
|
|
#define RDNA2
|
|
#endif
|
|
|
|
#ifndef __has_builtin
|
|
#define __has_builtin(x) 0
|
|
#endif
|
|
|
|
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
|
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
|
|
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
|
#if __has_builtin(__builtin_elementwise_sub_sat)
|
|
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
|
return reinterpret_cast<const int &>(c);
|
|
#else
|
|
int8x4_t c;
|
|
int16_t tmp;
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; i++) {
|
|
tmp = va[i] - vb[i];
|
|
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
|
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
|
c[i] = tmp;
|
|
}
|
|
return reinterpret_cast<int &>(c);
|
|
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
|
}
|
|
|
|
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
|
|
return __vsubss4(a, b);
|
|
}
|
|
|
|
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
|
|
const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
|
|
const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
|
|
unsigned int c;
|
|
uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i) {
|
|
vc[i] = va[i] == vb[i] ? 0xff : 0x00;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
|
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
|
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
|
#elif defined(RDNA3)
|
|
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
|
#elif defined(__gfx1010__) || defined(__gfx900__)
|
|
int tmp1;
|
|
int tmp2;
|
|
asm("\n \
|
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
|
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
|
|
v_add3_u32 %0, %1, %2, %0 \n \
|
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
|
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
|
|
v_add3_u32 %0, %1, %2, %0 \n \
|
|
"
|
|
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
|
|
: "v"(a), "v"(b)
|
|
);
|
|
#else
|
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
|
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
|
#endif
|
|
return c;
|
|
}
|
|
#endif // defined(GGML_USE_HIPBLAS)
|
|
|
|
// TODO: move to ggml-common.h
|
|
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
|
|
|
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
|
|
|
|
|
//////////////////////
|
|
|
|
struct ggml_cuda_device_info {
|
|
int device_count;
|
|
|
|
struct cuda_device_info {
|
|
int cc; // compute capability
|
|
size_t smpb; // max. shared memory per block
|
|
bool vmm; // virtual memory support
|
|
size_t vmm_granularity; // granularity of virtual memory
|
|
size_t total_vram;
|
|
};
|
|
|
|
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
|
|
|
|
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
|
|
};
|
|
|
|
const ggml_cuda_device_info & ggml_cuda_info();
|
|
|
|
void ggml_cuda_set_device(int device);
|
|
int ggml_cuda_get_device();
|
|
|
|
struct ggml_cuda_pool {
|
|
virtual ~ggml_cuda_pool() = default;
|
|
|
|
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
|
virtual void free(void * ptr, size_t size) = 0;
|
|
};
|
|
|
|
template<typename T>
|
|
struct ggml_cuda_pool_alloc {
|
|
ggml_cuda_pool * pool = nullptr;
|
|
T * ptr = nullptr;
|
|
size_t actual_size = 0;
|
|
|
|
ggml_cuda_pool_alloc() = default;
|
|
|
|
explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
|
|
}
|
|
|
|
ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
|
|
alloc(size);
|
|
}
|
|
|
|
~ggml_cuda_pool_alloc() {
|
|
if (ptr != nullptr) {
|
|
pool->free(ptr, actual_size);
|
|
}
|
|
}
|
|
|
|
// size is in number of elements
|
|
T * alloc(size_t size) {
|
|
GGML_ASSERT(pool != nullptr);
|
|
GGML_ASSERT(ptr == nullptr);
|
|
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
|
return ptr;
|
|
}
|
|
|
|
T * alloc(ggml_cuda_pool & pool, size_t size) {
|
|
this->pool = &pool;
|
|
return alloc(size);
|
|
}
|
|
|
|
T * get() {
|
|
return ptr;
|
|
}
|
|
|
|
ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
|
|
ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
|
|
ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
|
|
ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
|
|
};
|
|
|
|
|
|
// backend interface
|
|
|
|
struct ggml_tensor_extra_gpu {
|
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
|
};
|
|
|
|
struct ggml_backend_cuda_context {
|
|
int device;
|
|
std::string name;
|
|
cudaEvent_t copy_event = nullptr;
|
|
|
|
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
|
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
|
|
explicit ggml_backend_cuda_context(int device) :
|
|
device(device),
|
|
name(GGML_CUDA_NAME + std::to_string(device)) {
|
|
}
|
|
|
|
~ggml_backend_cuda_context() {
|
|
if (copy_event != nullptr) {
|
|
CUDA_CHECK(cudaEventDestroy(copy_event));
|
|
}
|
|
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
|
|
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
|
|
if (streams[i][j] != nullptr) {
|
|
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
|
|
}
|
|
}
|
|
if (cublas_handles[i] != nullptr) {
|
|
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
cudaStream_t stream(int device, int stream) {
|
|
if (streams[device][stream] == nullptr) {
|
|
ggml_cuda_set_device(device);
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
|
|
}
|
|
return streams[device][stream];
|
|
}
|
|
|
|
cudaStream_t stream() {
|
|
return stream(device, 0);
|
|
}
|
|
|
|
cublasHandle_t cublas_handle(int device) {
|
|
if (cublas_handles[device] == nullptr) {
|
|
ggml_cuda_set_device(device);
|
|
CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
|
|
CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
|
|
}
|
|
return cublas_handles[device];
|
|
}
|
|
|
|
cublasHandle_t cublas_handle() {
|
|
return cublas_handle(device);
|
|
}
|
|
|
|
// pool
|
|
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
|
|
|
|
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
|
|
|
|
ggml_cuda_pool & pool(int device) {
|
|
if (pools[device] == nullptr) {
|
|
pools[device] = new_pool_for_device(device);
|
|
}
|
|
return *pools[device];
|
|
}
|
|
|
|
ggml_cuda_pool & pool() {
|
|
return pool(device);
|
|
}
|
|
};
|