* merged the changes from deepseeker models to main branch * Moved regex patterns to unicode.cpp and updated unicode.h * Moved header files * Resolved issues * added and refactored unicode_regex_split and related functions * Updated/merged the deepseek coder pr * Refactored code * Adding unicode regex mappings * Adding unicode regex function * Added needed functionality, testing remains * Fixed issues * Fixed issue with gpt2 regex custom preprocessor * unicode : fix? unicode_wstring_to_utf8 * lint : fix whitespaces * tests : add tokenizer tests for numbers * unicode : remove redundant headers * tests : remove and rename tokenizer test scripts * tests : add sample usage * gguf-py : reader prints warnings on duplicate keys * llama : towards llama3 tokenization support (wip) * unicode : shot in the dark to fix tests on Windows * unicode : first try custom implementations * convert : add "tokenizer.ggml.pre" GGUF KV (wip) * llama : use new pre-tokenizer type * convert : fix pre-tokenizer type writing * lint : fix * make : add test-tokenizer-0-llama-v3 * wip * models : add llama v3 vocab file * llama : adapt punctuation regex + add llama 3 regex * minor * unicode : set bomb * unicode : set bomb * unicode : always use std::wregex * unicode : support \p{N}, \p{L} and \p{P} natively * unicode : try fix windows * unicode : category support via std::regex * unicode : clean-up * unicode : simplify * convert : add convert-hf-to-gguf-update.py ggml-ci * lint : update * convert : add falcon ggml-ci * unicode : normalize signatures * lint : fix * lint : fix * convert : remove unused functions * convert : add comments * convert : exercise contractions ggml-ci * lint : fix * cmake : refactor test targets * tests : refactor vocab tests ggml-ci * tests : add more vocabs and tests ggml-ci * unicode : cleanup * scripts : ignore new update script in check-requirements.sh * models : add phi-3, mpt, gpt-2, starcoder * tests : disable obsolete ggml-ci * tests : use faster bpe test ggml-ci * llama : more prominent warning for old BPE models * tests : disable test-tokenizer-1-bpe due to slowness ggml-ci --------- Co-authored-by: Jaggzh <jaggz.h@gmail.com> Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
gguf
This is a Python package for writing binary files in the GGUF (GGML Universal File) format.
See convert-llama-hf-to-gguf.py as an example for its usage.
Installation
pip install gguf
API Examples/Simple Tools
examples/writer.py — Generates example.gguf
in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.
scripts/gguf-dump.py — Dumps a GGUF file's metadata to the console.
scripts/gguf-set-metadata.py — Allows changing simple metadata values in a GGUF file by key.
scripts/gguf-convert-endian.py — Allows converting the endianness of GGUF files.
scripts/gguf-new-metadata.py — Copies a GGUF file with added/modified/removed metadata values.
Development
Maintainers who participate in development of this package are advised to install it in editable mode:
cd /path/to/llama.cpp/gguf-py
pip install --editable .
Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py
.
In this case, upgrade Pip to the latest:
pip install --upgrade pip
Automatic publishing with CI
There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.
- Bump the version in
pyproject.toml
. - Create a tag named
gguf-vx.x.x
wherex.x.x
is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
- Push the tags.
git push origin --tags
Manual publishing
If you want to publish the package manually for any reason, you need to have twine
and build
installed:
pip install build twine
Then, follow these steps to release a new version:
- Bump the version in
pyproject.toml
. - Build the package:
python -m build
- Upload the generated distribution archives:
python -m twine upload dist/*
TODO
- Add tests
- Include conversion scripts as command line entry points in this package.