Olivier Chafik 1c641e6aac
build: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809)
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew

* server: update refs -> llama-server

gitignore llama-server

* server: simplify nix package

* main: update refs -> llama

fix examples/main ref

* main/server: fix targets

* update more names

* Update build.yml

* rm accidentally checked in bins

* update straggling refs

* Update .gitignore

* Update server-llm.sh

* main: target name -> llama-cli

* Prefix all example bins w/ llama-

* fix main refs

* rename {main->llama}-cmake-pkg binary

* prefix more cmake targets w/ llama-

* add/fix gbnf-validator subfolder to cmake

* sort cmake example subdirs

* rm bin files

* fix llama-lookup-* Makefile rules

* gitignore /llama-*

* rename Dockerfiles

* rename llama|main -> llama-cli; consistent RPM bin prefixes

* fix some missing -cli suffixes

* rename dockerfile w/ llama-cli

* rename(make): llama-baby-llama

* update dockerfile refs

* more llama-cli(.exe)

* fix test-eval-callback

* rename: llama-cli-cmake-pkg(.exe)

* address gbnf-validator unused fread warning (switched to C++ / ifstream)

* add two missing llama- prefixes

* Updating docs for eval-callback binary to use new `llama-` prefix.

* Updating a few lingering doc references for rename of main to llama-cli

* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.

* Updating documentation references for lookup-merge and export-lora

* Updating two small `main` references missed earlier in the finetune docs.

* Update apps.nix

* update grammar/README.md w/ new llama-* names

* update llama-rpc-server bin name + doc

* Revert "update llama-rpc-server bin name + doc"

This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930.

* add hot topic notice to README.md

* Update README.md

* Update README.md

* rename gguf-split & quantize bins refs in **/tests.sh

---------

Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-13 00:41:52 +01:00
..
2024-05-10 09:41:10 +03:00
2024-05-28 12:48:16 +10:00

LLaVA

Currently this implementation supports llava-v1.5 variants, as well as llava-1.6 llava-v1.6 variants.

The pre-converted 7b and 13b models are available. For llava-1.6 a variety of prepared gguf models are available as well 7b-34b

After API is confirmed, more models will be supported / uploaded.

Usage

Build with cmake or run make llama-llava-cli to build it.

After building, run: ./llama-llava-cli to see the usage. For example:

./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg

note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so. note: For GPU offloading ensure to use the -ngl flag just like usual

LLaVA 1.5

  1. Clone a LLaVA and a CLIP model (available options). For example:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b

git clone https://huggingface.co/openai/clip-vit-large-patch14-336
  1. Install the required Python packages:
pip install -r examples/llava/requirements.txt
  1. Use llava-surgery.py to split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
  1. Use convert-image-encoder-to-gguf.py to convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
  1. Use examples/convert-legacy-llama.py to convert the LLaMA part of LLaVA to GGUF:
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown

Now both the LLaMA part and the image encoder are in the llava-v1.5-7b directory.

LLaVA 1.6 gguf conversion

  1. First clone a LLaVA 1.6 model:
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
  1. Install the required Python packages:
pip install -r examples/llava/requirements.txt
  1. Use llava-surgery-v2.py which also supports llava-1.5 variants pytorch as well as safetensor models:
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
  • you will find a llava.projector and a llava.clip file in your model directory
  1. Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
  1. Create the visual gguf model:
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
  • This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
  1. Then convert the model to gguf format:
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
  1. And finally we can run the llava cli using the 1.6 model version:
./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096

note llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) note llava-1.6 greatly benefits from batched prompt processing (defaults work)

llava-cli templating and llava-1.6 prompting

llava-1.5 models all use the same vicuna prompt, here you can just add your image question like -p "Provide a full description." For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:

For Mistral and using llava-cli binary: Add this: -p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n" The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role

For the 34B this should work: Add this: -e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n

How to know if you are running in llava-1.5 or llava-1.6 mode

When running llava-cli you will see a visual information right before the prompt is being processed:

Llava-1.5: encode_image_with_clip: image embedding created: 576 tokens

Llava-1.6 (anything above 576): encode_image_with_clip: image embedding created: 2880 tokens

Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6

TODO

  • Support non-CPU backend for the image encoding part.
  • Support different sampling methods.
  • Support more model variants.