mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 12:30:50 +01:00
3fd62a6b1c
* py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors.
566 lines
21 KiB
Python
566 lines
21 KiB
Python
# Test libllama tokenizer == AutoTokenizer.
|
||
# Brute force random words/text generation.
|
||
#
|
||
# Sample usage:
|
||
#
|
||
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
|
||
#
|
||
|
||
from __future__ import annotations
|
||
|
||
import time
|
||
import logging
|
||
import argparse
|
||
import subprocess
|
||
import random
|
||
import unicodedata
|
||
|
||
from pathlib import Path
|
||
from typing import Any, Iterator, cast
|
||
from typing_extensions import Buffer
|
||
|
||
import cffi
|
||
from transformers import AutoTokenizer
|
||
|
||
|
||
logger = logging.getLogger("test-tokenizer-random")
|
||
|
||
|
||
class LibLlama:
|
||
|
||
DEFAULT_PATH_LLAMA_H = "./include/llama.h"
|
||
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
|
||
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
|
||
|
||
def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
|
||
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
|
||
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
|
||
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
|
||
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
|
||
self.lib.llama_backend_init()
|
||
|
||
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
|
||
cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
|
||
cmd += ["-I" + path for path in path_includes] + [path_llama_h]
|
||
res = subprocess.run(cmd, stdout=subprocess.PIPE)
|
||
assert (res.returncode == 0)
|
||
source = res.stdout.decode()
|
||
ffi = cffi.FFI()
|
||
if True: # workarounds for pycparser
|
||
source = "typedef struct { } __builtin_va_list;" + "\n" + source
|
||
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
|
||
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
|
||
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
|
||
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
|
||
ffi.cdef(source, override=True)
|
||
lib = ffi.dlopen(path_libllama)
|
||
return (ffi, lib)
|
||
|
||
def model_default_params(self, **kwargs):
|
||
mparams = self.lib.llama_model_default_params()
|
||
for k, v in kwargs.items():
|
||
setattr(mparams, k, v)
|
||
return mparams
|
||
|
||
def context_default_params(self, **kwargs):
|
||
cparams = self.lib.llama_context_default_params()
|
||
for k, v in kwargs.items():
|
||
setattr(cparams, k, v)
|
||
return cparams
|
||
|
||
|
||
class LibLlamaModel:
|
||
|
||
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
|
||
self.lib: Any = libllama.lib
|
||
self.ffi = libllama.ffi
|
||
if isinstance(mparams, dict):
|
||
mparams = libllama.model_default_params(**mparams)
|
||
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
|
||
if not self.model:
|
||
raise RuntimeError("error: failed to load model '%s'" % path_model)
|
||
if isinstance(cparams, dict):
|
||
cparams = libllama.context_default_params(**cparams)
|
||
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
|
||
if not self.ctx:
|
||
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
|
||
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
|
||
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
|
||
self.text_buff = self.ffi.new("uint8_t[]", 1024)
|
||
|
||
def free(self):
|
||
if self.ctx:
|
||
self.lib.llama_free(self.ctx)
|
||
if self.model:
|
||
self.lib.llama_free_model(self.model)
|
||
self.ctx = None
|
||
self.model = None
|
||
self.lib = None
|
||
|
||
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
|
||
encoded_text: bytes = text.encode("utf-8")
|
||
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
|
||
while num < 0 and len(self.token_ids) < (16 << 20):
|
||
self.token_ids = self.ffi.new("llama_token[]", -2 * num)
|
||
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
|
||
return list(self.token_ids[0:num])
|
||
|
||
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
|
||
if len(self.token_ids) < len(ids):
|
||
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
|
||
for i, id in enumerate(ids):
|
||
self.token_ids[i] = id
|
||
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
|
||
while num < 0 and len(self.text_buff) < (16 << 20):
|
||
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
|
||
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
|
||
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
|
||
|
||
|
||
class Tokenizer:
|
||
|
||
def encode(self, text: str) -> list[int]:
|
||
raise NotImplementedError
|
||
|
||
def decode(self, ids: list[int]) -> str:
|
||
raise NotImplementedError
|
||
|
||
|
||
class TokenizerGroundtruth (Tokenizer):
|
||
|
||
def __init__(self, dir_tokenizer: str):
|
||
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||
# guess BOS and EOS
|
||
ids = self.encode("a")
|
||
assert 1 <= len(ids) <= 3
|
||
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
|
||
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
|
||
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
|
||
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
|
||
# build vocab
|
||
tokens = list(self.model.get_vocab().values())
|
||
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
|
||
self.vocab = list(sorted(self.vocab))
|
||
# tokens and lists
|
||
self.special_tokens = list(self.model.all_special_tokens)
|
||
self.added_tokens = list(self.model.added_tokens_encoder)
|
||
self.bos_token = self.model.bos_token
|
||
self.eos_token = self.model.eos_token
|
||
|
||
def encode(self, text: str) -> list[int]:
|
||
return self.model.encode(text, add_special_tokens=True)
|
||
|
||
def decode(self, ids: list[int]) -> str:
|
||
return self.model.decode(ids, skip_special_tokens=False)
|
||
|
||
|
||
class TokenizerLlamaCpp (Tokenizer):
|
||
|
||
libllama: LibLlama | None = None
|
||
|
||
def __init__(self, vocab_file: str):
|
||
if not self.libllama:
|
||
self.libllama = LibLlama()
|
||
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||
|
||
def encode(self, text: str) -> list[int]:
|
||
return self.model.tokenize(text, add_special=True, parse_special=True)
|
||
|
||
def decode(self, ids: list[int]) -> str:
|
||
return self.model.detokenize(ids, remove_special=False, unparse_special=True)
|
||
|
||
|
||
def generator_custom_text() -> Iterator[str]:
|
||
"""General tests"""
|
||
yield from [
|
||
"",
|
||
" ",
|
||
" ",
|
||
" ",
|
||
"\t",
|
||
"\n",
|
||
"\n\n",
|
||
"\n\n\n",
|
||
"\t\n",
|
||
"Hello world",
|
||
" Hello world",
|
||
"Hello World",
|
||
" Hello World",
|
||
" Hello World!",
|
||
"Hello, world!",
|
||
" Hello, world!",
|
||
" this is 🦙.cpp",
|
||
"w048 7tuijk dsdfhu",
|
||
"нещо на Български",
|
||
"កាន់តែពិសេសអាចខលចេញ",
|
||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||
"Hello",
|
||
" Hello",
|
||
" Hello",
|
||
" Hello",
|
||
" Hello",
|
||
" Hello\n Hello",
|
||
" (",
|
||
"\n =",
|
||
"' era",
|
||
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
|
||
"3",
|
||
"33",
|
||
"333",
|
||
"3333",
|
||
"33333",
|
||
"333333",
|
||
"3333333",
|
||
"33333333",
|
||
"333333333",
|
||
]
|
||
|
||
|
||
def generator_custom_text_edge_cases() -> Iterator[str]:
|
||
"""Edge cases found while debugging"""
|
||
yield from [
|
||
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
|
||
'¼-a', # unicode_ranges_digit, 0x00BC
|
||
'½-a', # unicode_ranges_digit, 0x00BD
|
||
'¾-a', # unicode_ranges_digit, 0x00BE
|
||
'a 〇b', # unicode_ranges_digit, 0x3007
|
||
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
|
||
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
|
||
'Cửa Việt', # llama-3, ignore_merges = true
|
||
'<s>a', # Phi-3 fail
|
||
'<unk><|endoftext|><s>', # Phi-3 fail
|
||
'a\na', # bert fail
|
||
'"`', # falcon
|
||
' \u2e4e', # falcon
|
||
'a\xa0\xa0\x00b', # jina-v2-es
|
||
'one <mask>', # jina-v2-es <mask> lstrip=true
|
||
'a </s> b', # rstrip phi-3
|
||
'a <mask> b', # lstrip jina-v2
|
||
'\xa0aC', # deepseek
|
||
'\u2029 \uA3E4', # deepseek-llm
|
||
"a ?",
|
||
'å', # mpt
|
||
'\U000ac517', # utf-8 encode error, falcon
|
||
'\U000522f4', # utf-8 encode error, starcoder
|
||
"<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
|
||
"<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
|
||
]
|
||
|
||
|
||
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
|
||
"""Brute force check all vocab words"""
|
||
yield from tokenizer.vocab
|
||
|
||
|
||
def generator_ascii_lr_strip() -> Iterator[str]:
|
||
WHITESPACES = ["", " ", " "]
|
||
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
|
||
for char1 in CHARACTERS:
|
||
for char2 in CHARACTERS:
|
||
for lstrip in WHITESPACES:
|
||
for rstrip in WHITESPACES:
|
||
yield lstrip + char1 + char2 + rstrip
|
||
yield lstrip + char1 + rstrip + char2
|
||
yield char1 + lstrip + char2 + rstrip
|
||
|
||
|
||
def generator_apostrophe() -> Iterator[str]:
|
||
WHITESPACES = ["", " ", " "]
|
||
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
|
||
for char1 in CHARACTERS:
|
||
for char2 in CHARACTERS:
|
||
for lstrip in WHITESPACES:
|
||
for rstrip in WHITESPACES:
|
||
yield char1 + lstrip + "'" + rstrip + char2
|
||
yield char1 + char2 + lstrip + "'" + rstrip + "z"
|
||
yield "a" + lstrip + "'" + rstrip + char1 + char2
|
||
|
||
|
||
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
|
||
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
|
||
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
|
||
for token in all_tokens:
|
||
for lstrip in WHITESPACES:
|
||
for rstrip in WHITESPACES:
|
||
yield lstrip + token + rstrip
|
||
yield "a" + lstrip + token + rstrip
|
||
yield lstrip + token + rstrip + "z"
|
||
yield "a" + lstrip + token + rstrip + "z"
|
||
|
||
|
||
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
|
||
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
|
||
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
|
||
rand = random.Random()
|
||
for m in range(iterations):
|
||
rand.seed(m)
|
||
words = rand.choices(all_tokens, k=500)
|
||
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
|
||
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
|
||
words.pop(0)
|
||
if tokenizer.add_bos_token: # drop all starting BOS
|
||
words.pop(0)
|
||
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
|
||
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
|
||
words.pop(-1)
|
||
if tokenizer.add_bos_token: # drop all trailing EOS
|
||
words.pop(-1)
|
||
yield "".join(words)
|
||
|
||
|
||
def generator_random_chars(iterations=100) -> Iterator[str]:
|
||
"""Brute force random text with simple characters"""
|
||
|
||
NUM_WORDS = 400
|
||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||
CHARS = list(sorted(set("""
|
||
ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
||
abcdefghijklmnopqrstuvwxyz
|
||
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
|
||
áéíóúàèìòùâêîôûäëïöü
|
||
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
|
||
""")))
|
||
|
||
rand = random.Random()
|
||
for m in range(iterations):
|
||
rand.seed(m)
|
||
text = []
|
||
for _ in range(NUM_WORDS):
|
||
k = rand.randint(1, 7)
|
||
word = rand.choices(CHARS, k=k)
|
||
word.append(rand.choice(WHITESPACES))
|
||
text.append("".join(word))
|
||
yield "".join(text)
|
||
|
||
|
||
def generator_unicodes() -> Iterator[str]:
|
||
"""Iterate unicode characters"""
|
||
|
||
MAX_CODEPOINTS = 0x30000 # 0x110000
|
||
|
||
def _valid(cpt):
|
||
if cpt >= 0x30000: # unassigned and supplementary
|
||
return False
|
||
# if cpt == 0x2029: # deepseek-llm
|
||
# return False
|
||
if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
|
||
return False
|
||
return True
|
||
|
||
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
|
||
|
||
yield from characters
|
||
|
||
|
||
def generator_random_unicodes(iterations=100) -> Iterator[str]:
|
||
"""Brute force random text with unicode characters"""
|
||
|
||
NUM_WORDS = 200
|
||
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
|
||
|
||
characters = list(generator_unicodes())
|
||
|
||
rand = random.Random()
|
||
for m in range(iterations):
|
||
rand.seed(m)
|
||
text = []
|
||
for _ in range(NUM_WORDS):
|
||
k = rand.randint(1, 7)
|
||
word = rand.choices(characters, k=k)
|
||
word.append(rand.choice(WHITESPACES))
|
||
text.append("".join(word))
|
||
yield "".join(text)
|
||
|
||
|
||
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
|
||
"""Brute force random text with vocab characters"""
|
||
|
||
vocab_chars = set()
|
||
for word in tokenizer.vocab:
|
||
vocab_chars.update(word)
|
||
vocab_chars = list(sorted(vocab_chars))
|
||
|
||
rand = random.Random()
|
||
for m in range(iterations):
|
||
rand.seed(m)
|
||
text = rand.choices(vocab_chars, k=1024)
|
||
yield "".join(text)
|
||
|
||
|
||
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
|
||
"""Brute force random text from vocab words"""
|
||
|
||
vocab = [w.strip() for w in tokenizer.vocab]
|
||
yield from vocab
|
||
|
||
rand = random.Random()
|
||
for m in range(iterations):
|
||
rand.seed(m)
|
||
text = []
|
||
num_words = rand.randint(300, 400)
|
||
for i in range(num_words):
|
||
k = rand.randint(1, 3)
|
||
words = rand.choices(vocab, k=k)
|
||
sep = rand.choice(" \n\r\t")
|
||
text.append("".join(words) + sep)
|
||
yield "".join(text)
|
||
|
||
|
||
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
|
||
|
||
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
|
||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||
if a != b:
|
||
return i
|
||
if len(ids1) == len(ids2):
|
||
return -1
|
||
return min(len(ids1), len(ids2))
|
||
|
||
def check_detokenizer(text: str, text1: str, text2: str) -> bool:
|
||
if text1 == text2: # equal to TokenizerGroundtruth?
|
||
return True
|
||
# equal to source text?
|
||
if tokenizer1.add_bos_token: # remove BOS
|
||
if text2.startswith(tokenizer1.bos_token):
|
||
text2 = text2[len(tokenizer1.bos_token):]
|
||
if tokenizer1.add_eos_token: # remove EOS
|
||
if text2.endswith(tokenizer1.eos_token):
|
||
text2 = text2[:-len(tokenizer1.eos_token)]
|
||
return text == text2
|
||
|
||
t_encode1 = 0
|
||
t_encode2 = 0
|
||
t_decode1 = 0
|
||
t_decode2 = 0
|
||
t_start = time.perf_counter()
|
||
encode_errors = 0
|
||
decode_errors = 0
|
||
MAX_ERRORS = 10
|
||
|
||
logger.info("%s: %s" % (generator.__qualname__, "ini"))
|
||
for text in generator:
|
||
# print(repr(text), text.encode())
|
||
# print(repr(text), hex(ord(text[0])), text.encode())
|
||
t0 = time.perf_counter()
|
||
ids1 = tokenizer1.encode(text)
|
||
t1 = time.perf_counter()
|
||
ids2 = tokenizer2.encode(text)
|
||
t2 = time.perf_counter()
|
||
text1 = tokenizer1.decode(ids1)
|
||
t3 = time.perf_counter()
|
||
text2 = tokenizer2.decode(ids1)
|
||
t4 = time.perf_counter()
|
||
t_encode1 += t1 - t0
|
||
t_encode2 += t2 - t1
|
||
t_decode1 += t3 - t2
|
||
t_decode2 += t4 - t3
|
||
if encode_errors < MAX_ERRORS and ids1 != ids2:
|
||
i = find_first_mismatch(ids1, ids2)
|
||
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
||
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
||
logger.error(" Expected: " + str(ids1))
|
||
logger.error(" Result: " + str(ids2))
|
||
encode_errors += 1
|
||
logger.error(f" {encode_errors=}")
|
||
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
|
||
i = find_first_mismatch(text1, text2)
|
||
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
|
||
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
|
||
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
|
||
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
|
||
decode_errors += 1
|
||
logger.error(f" {decode_errors=}")
|
||
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
|
||
logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
|
||
# raise Exception()
|
||
break
|
||
|
||
t_total = time.perf_counter() - t_start
|
||
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
|
||
|
||
|
||
def main(argv: list[str] | None = None):
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
|
||
parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
|
||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||
args = parser.parse_args(argv)
|
||
|
||
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
|
||
logger.info(f"VOCABFILE: '{args.vocab_file}'")
|
||
|
||
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
|
||
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
|
||
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
|
||
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
|
||
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
|
||
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
|
||
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
|
||
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
|
||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
|
||
|
||
tokenizer2.model.free()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# main()
|
||
|
||
if True:
|
||
logging.basicConfig(
|
||
level = logging.DEBUG,
|
||
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
||
datefmt = "%Y-%m-%d %H:%M:%S",
|
||
filename = logger.name + ".log",
|
||
filemode = "a"
|
||
)
|
||
logging.basicConfig(
|
||
level = logging.DEBUG,
|
||
format = "%(levelname)s %(message)s",
|
||
)
|
||
|
||
path_tokenizers = Path("./models/tokenizers/")
|
||
path_vocab_format = "./models/ggml-vocab-%s.gguf"
|
||
|
||
tokenizers = [
|
||
"llama-spm", # SPM
|
||
"phi-3", # SPM
|
||
"gemma", # SPM
|
||
"gemma-2", # SPM
|
||
"baichuan", # SPM
|
||
"bert-bge", # WPM
|
||
"jina-v2-en", # WPM
|
||
"llama-bpe", # BPE
|
||
"phi-2", # BPE
|
||
"deepseek-llm", # BPE
|
||
"deepseek-coder", # BPE
|
||
"falcon", # BPE
|
||
"mpt", # BPE
|
||
"starcoder", # BPE
|
||
"gpt-2", # BPE
|
||
"stablelm2", # BPE
|
||
"refact", # BPE
|
||
"qwen2", # BPE
|
||
"olmo", # BPE
|
||
"jina-v2-es", # BPE
|
||
"jina-v2-de", # BPE
|
||
"smaug-bpe", # BPE
|
||
"poro-chat", # BPE
|
||
"jina-v2-code", # BPE
|
||
"viking", # BPE
|
||
"jais", # BPE
|
||
]
|
||
|
||
logger.info("=" * 50)
|
||
for tokenizer in tokenizers:
|
||
logger.info("-" * 50)
|
||
logger.info(f"TOKENIZER: '{tokenizer}'")
|
||
vocab_file = Path(path_vocab_format % tokenizer)
|
||
dir_tokenizer = path_tokenizers / tokenizer
|
||
main([str(vocab_file), str(dir_tokenizer), "--verbose"])
|