mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 12:30:50 +01:00
3fd62a6b1c
* py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors.
train-text-from-scratch
Basic usage instructions:
# get training data
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
# train
./bin/llama-train-text-from-scratch \
--vocab-model ../models/ggml-vocab-llama.gguf \
--ctx 64 --embd 256 --head 8 --layer 16 \
--checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
--checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
--model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
--train-data "shakespeare.txt" \
-t 6 -b 16 --seed 1 --adam-iter 256 \
--no-checkpointing
# predict
./bin/llama-cli -m ggml-shakespeare-256x16-f32.gguf
Output files will be saved every N iterations (config with --save-every N
).
The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
To train GGUF models just pass them to --checkpoint-in FN
.