mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 12:30:50 +01:00
42c76d1358
* Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
489 lines
20 KiB
C++
489 lines
20 KiB
C++
// Various helper functions and utilities
|
|
|
|
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include "sampling.h"
|
|
|
|
#define LOG_NO_FILE_LINE_FUNCTION
|
|
#include "log.h"
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <tuple>
|
|
|
|
#ifdef _WIN32
|
|
#define DIRECTORY_SEPARATOR '\\'
|
|
#else
|
|
#define DIRECTORY_SEPARATOR '/'
|
|
#endif // _WIN32
|
|
|
|
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
|
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
|
|
|
#define print_build_info() do { \
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
|
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
|
} while(0)
|
|
|
|
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
|
|
|
struct llama_lora_adapter_info {
|
|
std::string path;
|
|
float scale;
|
|
};
|
|
|
|
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
|
struct llama_lora_adapter * adapter;
|
|
};
|
|
|
|
// build info
|
|
extern int LLAMA_BUILD_NUMBER;
|
|
extern char const * LLAMA_COMMIT;
|
|
extern char const * LLAMA_COMPILER;
|
|
extern char const * LLAMA_BUILD_TARGET;
|
|
|
|
struct llama_control_vector_load_info;
|
|
|
|
//
|
|
// CPU utils
|
|
//
|
|
|
|
int32_t cpu_get_num_physical_cores();
|
|
int32_t cpu_get_num_math();
|
|
|
|
//
|
|
// CLI argument parsing
|
|
//
|
|
|
|
// dimensionality reduction methods, used by cvector-generator
|
|
enum dimre_method {
|
|
DIMRE_METHOD_PCA,
|
|
DIMRE_METHOD_MEAN,
|
|
};
|
|
|
|
struct cpu_params {
|
|
int n_threads = -1;
|
|
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
|
bool mask_valid = false; // Default: any CPU
|
|
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
|
bool strict_cpu = false; // Use strict CPU placement
|
|
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
|
};
|
|
|
|
struct gpt_params {
|
|
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
|
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
int32_t n_ctx = 0; // context size
|
|
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
|
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
|
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
|
int32_t n_parallel = 1; // number of parallel sequences to decode
|
|
int32_t n_sequences = 1; // number of sequences to decode
|
|
float p_split = 0.1f; // speculative decoding split probability
|
|
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
|
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
|
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
|
int32_t grp_attn_n = 1; // group-attention factor
|
|
int32_t grp_attn_w = 512; // group-attention width
|
|
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
|
float rope_freq_base = 0.0f; // RoPE base frequency
|
|
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
|
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
|
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
|
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
|
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
|
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
|
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
|
|
|
struct cpu_params cpuparams;
|
|
struct cpu_params cpuparams_batch;
|
|
struct cpu_params draft_cpuparams;
|
|
struct cpu_params draft_cpuparams_batch;
|
|
|
|
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
|
void * cb_eval_user_data = nullptr;
|
|
|
|
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
|
|
|
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
|
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
|
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
|
|
|
// // sampling parameters
|
|
struct llama_sampling_params sparams;
|
|
|
|
std::string model = ""; // model path
|
|
std::string model_draft = ""; // draft model for speculative decoding
|
|
std::string model_alias = "unknown"; // model alias
|
|
std::string model_url = ""; // model url to download
|
|
std::string hf_token = ""; // HF token
|
|
std::string hf_repo = ""; // HF repo
|
|
std::string hf_file = ""; // HF file
|
|
std::string prompt = "";
|
|
std::string prompt_file = ""; // store the external prompt file name
|
|
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
|
std::string input_prefix = ""; // string to prefix user inputs with
|
|
std::string input_suffix = ""; // string to suffix user inputs with
|
|
std::string logdir = ""; // directory in which to save YAML log files
|
|
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
|
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
|
std::string logits_file = ""; // file for saving *all* logits
|
|
std::string rpc_servers = ""; // comma separated list of RPC servers
|
|
|
|
std::vector<std::string> in_files; // all input files
|
|
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
|
std::vector<llama_model_kv_override> kv_overrides;
|
|
|
|
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
|
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
|
|
|
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
|
|
|
int32_t verbosity = 0;
|
|
int32_t control_vector_layer_start = -1; // layer range for control vector
|
|
int32_t control_vector_layer_end = -1; // layer range for control vector
|
|
|
|
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
|
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
|
// (which is more convenient to use for plotting)
|
|
//
|
|
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
|
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
|
|
|
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
|
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
|
|
|
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
|
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
|
|
|
bool kl_divergence = false; // compute KL divergence
|
|
|
|
bool usage = false; // print usage
|
|
bool use_color = false; // use color to distinguish generations and inputs
|
|
bool special = false; // enable special token output
|
|
bool interactive = false; // interactive mode
|
|
bool interactive_first = false; // wait for user input immediately
|
|
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
|
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
|
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
|
|
|
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
|
bool multiline_input = false; // reverse the usage of `\`
|
|
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
|
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
|
bool flash_attn = false; // flash attention
|
|
|
|
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
|
bool ignore_eos = false; // ignore generated EOS tokens
|
|
bool logits_all = false; // return logits for all tokens in the batch
|
|
bool use_mmap = true; // use mmap for faster loads
|
|
bool use_mlock = false; // use mlock to keep model in memory
|
|
bool verbose_prompt = false; // print prompt tokens before generation
|
|
bool display_prompt = true; // print prompt before generation
|
|
bool infill = false; // use infill mode
|
|
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
|
bool no_kv_offload = false; // disable KV offloading
|
|
bool warmup = true; // warmup run
|
|
bool check_tensors = false; // validate tensor data
|
|
|
|
std::string cache_type_k = "f16"; // KV cache data type for the K
|
|
std::string cache_type_v = "f16"; // KV cache data type for the V
|
|
|
|
// multimodal models (see examples/llava)
|
|
std::string mmproj = ""; // path to multimodal projector
|
|
std::vector<std::string> image; // path to image file(s)
|
|
|
|
// embedding
|
|
bool embedding = false; // get only sentence embedding
|
|
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
|
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
|
std::string embd_sep = "\n"; // separator of embendings
|
|
|
|
// server params
|
|
int32_t port = 8080; // server listens on this network port
|
|
int32_t timeout_read = 600; // http read timeout in seconds
|
|
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
|
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
|
|
|
std::string hostname = "127.0.0.1";
|
|
std::string public_path = "";
|
|
std::string chat_template = "";
|
|
std::string system_prompt = "";
|
|
bool enable_chat_template = true;
|
|
|
|
std::vector<std::string> api_keys;
|
|
|
|
std::string ssl_file_key = "";
|
|
std::string ssl_file_cert = "";
|
|
|
|
bool endpoint_slots = true;
|
|
bool endpoint_metrics = false;
|
|
|
|
bool log_json = false;
|
|
|
|
std::string slot_save_path;
|
|
|
|
float slot_prompt_similarity = 0.5f;
|
|
|
|
// batched-bench params
|
|
bool is_pp_shared = false;
|
|
|
|
std::vector<int32_t> n_pp;
|
|
std::vector<int32_t> n_tg;
|
|
std::vector<int32_t> n_pl;
|
|
|
|
// retrieval params
|
|
std::vector<std::string> context_files; // context files to embed
|
|
|
|
int32_t chunk_size = 64; // chunk size for context embedding
|
|
|
|
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
|
|
|
// passkey params
|
|
int32_t n_junk = 250; // number of times to repeat the junk text
|
|
int32_t i_pos = -1; // position of the passkey in the junk text
|
|
|
|
// imatrix params
|
|
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
|
|
|
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
|
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
|
int32_t i_chunk = 0; // start processing from this chunk
|
|
|
|
bool process_output = false; // collect data for the output tensor
|
|
bool compute_ppl = true; // whether to compute perplexity
|
|
|
|
// cvector-generator params
|
|
int n_pca_batch = 100;
|
|
int n_pca_iterations = 1000;
|
|
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
|
std::string cvector_outfile = "control_vector.gguf";
|
|
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
|
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
|
|
|
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
|
|
|
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
|
};
|
|
|
|
void gpt_params_parse_from_env(gpt_params & params);
|
|
void gpt_params_handle_model_default(gpt_params & params);
|
|
|
|
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
|
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
|
|
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
|
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
std::string gpt_params_get_system_info(const gpt_params & params);
|
|
|
|
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
|
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
|
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
|
bool set_process_priority(enum ggml_sched_priority prio);
|
|
|
|
//
|
|
// String utils
|
|
//
|
|
|
|
std::vector<std::string> string_split(std::string input, char separator);
|
|
|
|
std::string string_strip(const std::string & str);
|
|
std::string string_get_sortable_timestamp();
|
|
|
|
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
|
|
|
template<class T>
|
|
static std::vector<T> string_split(const std::string & str, char delim) {
|
|
std::vector<T> values;
|
|
std::istringstream str_stream(str);
|
|
std::string token;
|
|
while (std::getline(str_stream, token, delim)) {
|
|
T value;
|
|
std::istringstream token_stream(token);
|
|
token_stream >> value;
|
|
values.push_back(value);
|
|
}
|
|
return values;
|
|
}
|
|
|
|
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
|
void string_process_escapes(std::string & input);
|
|
|
|
//
|
|
// Filesystem utils
|
|
//
|
|
|
|
bool fs_validate_filename(const std::string & filename);
|
|
bool fs_create_directory_with_parents(const std::string & path);
|
|
|
|
std::string fs_get_cache_directory();
|
|
std::string fs_get_cache_file(const std::string & filename);
|
|
|
|
//
|
|
// Model utils
|
|
//
|
|
|
|
struct llama_init_result {
|
|
struct llama_model * model = nullptr;
|
|
struct llama_context * context = nullptr;
|
|
std::vector<llama_lora_adapter_container> lora_adapters;
|
|
};
|
|
|
|
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
|
|
|
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
|
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
|
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
|
|
|
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
|
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
|
|
|
// clear LoRA adapters from context, then apply new list of adapters
|
|
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
|
|
|
// Batch utils
|
|
|
|
void llama_batch_clear(struct llama_batch & batch);
|
|
|
|
void llama_batch_add(
|
|
struct llama_batch & batch,
|
|
llama_token id,
|
|
llama_pos pos,
|
|
const std::vector<llama_seq_id> & seq_ids,
|
|
bool logits);
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
// tokenizes a string into a vector of tokens
|
|
// should work similar to Python's `tokenizer.encode`
|
|
std::vector<llama_token> llama_tokenize(
|
|
const struct llama_context * ctx,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special = false);
|
|
|
|
std::vector<llama_token> llama_tokenize(
|
|
const struct llama_model * model,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special = false);
|
|
|
|
// tokenizes a token into a piece, optionally renders special/control tokens
|
|
// should work similar to Python's `tokenizer.id_to_piece`
|
|
std::string llama_token_to_piece(
|
|
const struct llama_context * ctx,
|
|
llama_token token,
|
|
bool special = true);
|
|
|
|
// detokenizes a vector of tokens into a string
|
|
// should work similar to Python's `tokenizer.decode`
|
|
// optionally renders special/control tokens
|
|
std::string llama_detokenize(
|
|
llama_context * ctx,
|
|
const std::vector<llama_token> & tokens,
|
|
bool special = true);
|
|
|
|
//
|
|
// Chat template utils
|
|
//
|
|
|
|
// same with llama_chat_message, but uses std::string
|
|
struct llama_chat_msg {
|
|
std::string role;
|
|
std::string content;
|
|
};
|
|
|
|
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
|
bool llama_chat_verify_template(const std::string & tmpl);
|
|
|
|
// CPP wrapper for llama_chat_apply_template
|
|
// If the built-in template is not supported, we default to chatml
|
|
// If the custom "tmpl" is not supported, we throw an error
|
|
std::string llama_chat_apply_template(const struct llama_model * model,
|
|
const std::string & tmpl,
|
|
const std::vector<llama_chat_msg> & chat,
|
|
bool add_ass);
|
|
|
|
// Format single message, while taking into account the position of that message in chat history
|
|
std::string llama_chat_format_single(const struct llama_model * model,
|
|
const std::string & tmpl,
|
|
const std::vector<llama_chat_msg> & past_msg,
|
|
const llama_chat_msg & new_msg,
|
|
bool add_ass);
|
|
|
|
// Returns an example of formatted chat
|
|
std::string llama_chat_format_example(const struct llama_model * model,
|
|
const std::string & tmpl);
|
|
|
|
//
|
|
// KV cache utils
|
|
//
|
|
|
|
// Dump the KV cache view with the number of sequences per cell.
|
|
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
|
|
|
// Dump the KV cache view showing individual sequences in each cell (long output).
|
|
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
|
|
|
//
|
|
// Embedding utils
|
|
//
|
|
|
|
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
|
|
|
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
|
|
|
//
|
|
// Control vector utils
|
|
//
|
|
|
|
struct llama_control_vector_data {
|
|
int n_embd;
|
|
|
|
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
|
std::vector<float> data;
|
|
};
|
|
|
|
struct llama_control_vector_load_info {
|
|
float strength;
|
|
|
|
std::string fname;
|
|
};
|
|
|
|
// Load control vectors, scale each by strength, and add them together.
|
|
// On error, returns {-1, empty}
|
|
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
|
|
|
//
|
|
// Split utils
|
|
//
|
|
|
|
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
|
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
|
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
|
|
|
//
|
|
// YAML utils
|
|
//
|
|
|
|
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
|
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
|
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
|
|
|
void yaml_dump_non_result_info(
|
|
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|