* feat(gguf-py): Add granitemoe architecture This includes the addition of new tensor names for the new moe layers. These may not be correct at this point due to the need for the hack in gguf_writer.py to double-check the length of the shape for these layers. Branch: GraniteMoE Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat(convert_hf_to_gguf): Add GraniteMoeModel GraniteMoe has the same configuration deltas as Granite Branch: GraniteMoE Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(granitemoe convert): Split the double-sized input layer into gate and up After a lot of staring and squinting, it's clear that the standard mixtral expert implementation is equivalent to the vectorized parallel experts in granite. The difference is that in granite, the w1 and w3 are concatenated into a single tensor "input_linear." Rather than reimplementing all of the math on the llama.cpp side, the much simpler route is to just split this tensor during conversion and follow the standard mixtral route. Branch: GraniteMoE Co-Authored-By: alex.brooks@ibm.com Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat(granitemoe): Implement granitemoe GraniteMoE follows the mixtral architecture (once the input_linear layers are split into gate_exps/up_exps). The main delta is the addition of the same four multipliers used in Granite. Branch: GraniteMoE Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * Typo fix in docstring Co-Authored-By: ggerganov@gmail.com Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(conversion): Simplify tensor name mapping in conversion Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(convert): Remove unused tensor name mappings Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(convert): Sanity check on merged FFN tensor sizes Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Allow "output" layer in granite moe architecture (convert and cpp) Branch: GraniteMoE Co-Authored-By: git@compilade.net Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix(granite): Add missing 'output' tensor for Granite This is a fix for the previous `granite` architecture PR. Recent snapshots have included this (`lm_head.weights`) as part of the architecture Branch: GraniteMoE Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
gguf
This is a Python package for writing binary files in the GGUF (GGML Universal File) format.
See convert_hf_to_gguf.py as an example for its usage.
Installation
pip install gguf
API Examples/Simple Tools
examples/writer.py — Generates example.gguf
in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model.
scripts/gguf_dump.py — Dumps a GGUF file's metadata to the console.
scripts/gguf_set_metadata.py — Allows changing simple metadata values in a GGUF file by key.
scripts/gguf_convert_endian.py — Allows converting the endianness of GGUF files.
scripts/gguf_new_metadata.py — Copies a GGUF file with added/modified/removed metadata values.
Development
Maintainers who participate in development of this package are advised to install it in editable mode:
cd /path/to/llama.cpp/gguf-py
pip install --editable .
Note: This may require to upgrade your Pip installation, with a message saying that editable installation currently requires setup.py
.
In this case, upgrade Pip to the latest:
pip install --upgrade pip
Automatic publishing with CI
There's a GitHub workflow to make a release automatically upon creation of tags in a specified format.
- Bump the version in
pyproject.toml
. - Create a tag named
gguf-vx.x.x
wherex.x.x
is the semantic version number.
git tag -a gguf-v1.0.0 -m "Version 1.0 release"
- Push the tags.
git push origin --tags
Manual publishing
If you want to publish the package manually for any reason, you need to have twine
and build
installed:
pip install build twine
Then, follow these steps to release a new version:
- Bump the version in
pyproject.toml
. - Build the package:
python -m build
- Upload the generated distribution archives:
python -m twine upload dist/*
Run Unit Tests
From root of this repository you can run this command to run all the unit tests
python -m unittest discover ./gguf-py -v
TODO
- Include conversion scripts as command line entry points in this package.