mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 02:48:44 +01:00
180 lines
5.2 KiB
Python
180 lines
5.2 KiB
Python
# Convert a LLaMA model checkpoint to a ggml compatible file
|
|
#
|
|
# Load the model using Torch
|
|
# Iterate over all variables and write them to a binary file.
|
|
#
|
|
# For each variable, write the following:
|
|
# - Number of dimensions (int)
|
|
# - Name length (int)
|
|
# - Dimensions (int[n_dims])
|
|
# - Name (char[name_length])
|
|
# - Data (float[n_dims])
|
|
#
|
|
# At the start of the ggml file we write the model parameters
|
|
# and vocabulary.
|
|
#
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import json
|
|
import struct
|
|
import numpy as np
|
|
import torch
|
|
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
|
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
|
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
|
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
|
|
return parser.parse_args()
|
|
|
|
def get_n_parts(dim):
|
|
|
|
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
|
n_parts = mappings.get(dim)
|
|
if n_parts is None:
|
|
print(f"Invalid dim: {dim}")
|
|
sys.exit(1)
|
|
|
|
print(f"n_parts = {n_parts}\n")
|
|
return n_parts
|
|
|
|
def load_hparams_and_tokenizer(dir_model):
|
|
|
|
# `dir_model` is something like `models/7B` or `models/7B/`.
|
|
# "tokenizer.model" is expected under model's parent dir.
|
|
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
|
|
# Let's use the model's parent dir directly.
|
|
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
|
|
|
|
fname_hparams = f"{dir_model}/params.json"
|
|
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
|
|
|
|
with open(fname_hparams, "r") as f:
|
|
hparams = json.load(f)
|
|
print(hparams)
|
|
|
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
|
|
|
return hparams, tokenizer
|
|
|
|
def write_header(fout, hparams, ftype):
|
|
|
|
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
|
values = [
|
|
0x67676d66, # magic: ggmf in hex
|
|
1, # file version
|
|
*[hparams[key] for key in keys],
|
|
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
|
ftype
|
|
]
|
|
fout.write(struct.pack("i" * len(values), *values))
|
|
|
|
def write_tokens(fout, tokenizer):
|
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
if tokenizer.is_unknown(i):
|
|
text = " \u2047 ".encode("utf-8")
|
|
elif tokenizer.is_control(i):
|
|
text = b""
|
|
elif tokenizer.is_byte(i):
|
|
piece = tokenizer.id_to_piece(i)
|
|
if len(piece) != 6:
|
|
print(f"Invalid token: {piece}")
|
|
sys.exit(1)
|
|
byte_value = int(piece[3:-1], 16)
|
|
text = struct.pack("B", byte_value)
|
|
else:
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
|
|
|
def process_and_write_variables(fout, model, ftype):
|
|
|
|
for name, datao in model.items():
|
|
|
|
if name.endswith("freqs"):
|
|
continue
|
|
|
|
shape = datao.shape
|
|
|
|
print(f"Processing variable: {name} with shape: {shape} and type: {datao.dtype}")
|
|
|
|
data = datao.numpy().squeeze()
|
|
n_dims = len(shape)
|
|
|
|
# default type is fp16
|
|
ftype_cur = 1
|
|
if ftype == 0 or n_dims == 1:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# header
|
|
sname = name.encode('utf-8')
|
|
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
|
|
for dim in reversed(data.shape):
|
|
fout.write(struct.pack("i", dim))
|
|
fout.write(sname)
|
|
|
|
# data output to file
|
|
data.tofile(fout)
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
dir_model = args.dir_model
|
|
ftype = args.ftype
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
|
|
|
print(args)
|
|
|
|
# if only writing vocab to file
|
|
if args.vocab_only:
|
|
|
|
fname_model = f"{dir_model}/consolidated.00.pth"
|
|
fname_out = f"{dir_model}/ggml-vocab.bin"
|
|
|
|
print(f"Extracting only the vocab from '{fname_model}'\n")
|
|
|
|
|
|
with open(fname_out, "wb") as fout:
|
|
write_header(fout, hparams, ftype)
|
|
write_tokens(fout, tokenizer)
|
|
|
|
|
|
print(f"Done. Output file: {fname_out}\n")
|
|
|
|
return
|
|
|
|
n_parts = get_n_parts(hparams["dim"])
|
|
|
|
for p in range(n_parts):
|
|
|
|
print(f"Processing part {p+1} of {n_parts}\n")
|
|
|
|
fname_model = f"{dir_model}/consolidated.0{p}.pth"
|
|
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
|
|
|
|
model = torch.load(fname_model, map_location="cpu")
|
|
|
|
with open(fname_out, "wb") as fout:
|
|
write_header(fout, hparams, ftype)
|
|
write_tokens(fout, tokenizer)
|
|
process_and_write_variables(fout, model, ftype)
|
|
|
|
del model
|
|
|
|
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|