mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 10:58:56 +01:00
361 lines
12 KiB
C++
361 lines
12 KiB
C++
#include "ggml.h"
|
|
|
|
#include "utils.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <regex>
|
|
|
|
// TODO: move somewhere else
|
|
#define QK 32
|
|
|
|
// default hparams (LLaMA76B)
|
|
struct llama_hparams {
|
|
int32_t n_vocab = 32000;
|
|
int32_t n_ctx = 512; // this is provided as user input?
|
|
int32_t n_embd = 4096;
|
|
int32_t n_mult = 256;
|
|
int32_t n_head = 32;
|
|
int32_t n_layer = 32;
|
|
int32_t n_rot = 64;
|
|
int32_t f16 = 1;
|
|
};
|
|
|
|
|
|
// quantize a model
|
|
bool llama_model_quantize(const std::string & fname_inp, const std::string & fname_out, int itype) {
|
|
ggml_type type = GGML_TYPE_Q4_1;
|
|
|
|
switch (itype) {
|
|
case 2: type = GGML_TYPE_Q4_0; break;
|
|
case 3: type = GGML_TYPE_Q4_1; break;
|
|
default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
|
|
};
|
|
|
|
if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
|
|
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
|
|
return false;
|
|
}
|
|
|
|
gpt_vocab vocab;
|
|
|
|
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
|
|
|
|
auto finp = std::ifstream(fname_inp, std::ios::binary);
|
|
if (!finp) {
|
|
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
|
|
return false;
|
|
}
|
|
|
|
auto fout = std::ofstream(fname_out, std::ios::binary);
|
|
if (!fout) {
|
|
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
|
|
return false;
|
|
}
|
|
|
|
// verify magic
|
|
{
|
|
uint32_t magic;
|
|
finp.read((char *) &magic, sizeof(magic));
|
|
if (magic == FILE_MAGIC_UNVERSIONED) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
|
__func__, fname_inp.c_str());
|
|
return false;
|
|
}
|
|
if (magic != FILE_MAGIC) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
|
return false;
|
|
}
|
|
|
|
fout.write((char *) &magic, sizeof(magic));
|
|
|
|
uint32_t format_version;
|
|
finp.read((char *) &format_version, sizeof(format_version));
|
|
|
|
if (format_version != FILE_VERSION) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
|
|
__func__, fname_inp.c_str(), format_version, FILE_VERSION);
|
|
return false;
|
|
}
|
|
|
|
fout.write((char *) &format_version, sizeof(format_version));
|
|
}
|
|
|
|
llama_hparams hparams;
|
|
|
|
// load hparams
|
|
{
|
|
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
|
//finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
|
finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
|
finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
|
|
finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
|
finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
|
finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
|
finp.read((char *) &hparams.f16, sizeof(hparams.f16));
|
|
|
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
|
printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
|
|
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
|
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
|
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
|
|
|
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
|
//fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
|
fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
|
fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
|
|
fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
|
|
fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
|
fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
|
|
fout.write((char *) &itype, sizeof(hparams.f16));
|
|
}
|
|
|
|
// load vocab
|
|
{
|
|
const int32_t n_vocab = hparams.n_vocab;
|
|
|
|
if (n_vocab != hparams.n_vocab) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
|
__func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
|
|
return false;
|
|
}
|
|
|
|
std::string word;
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
uint32_t len;
|
|
finp.read ((char *) &len, sizeof(len));
|
|
fout.write((char *) &len, sizeof(len));
|
|
|
|
word.resize(len);
|
|
finp.read ((char *) word.data(), len);
|
|
fout.write((char *) word.data(), len);
|
|
|
|
float score;
|
|
finp.read ((char *) &score, sizeof(score));
|
|
fout.write((char *) &score, sizeof(score));
|
|
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
vocab.score[i] = score;
|
|
}
|
|
}
|
|
|
|
// load weights
|
|
{
|
|
size_t total_size_org = 0;
|
|
size_t total_size_new = 0;
|
|
|
|
std::vector<float> work;
|
|
|
|
std::vector<uint8_t> data_u8;
|
|
std::vector<ggml_fp16_t> data_f16;
|
|
std::vector<float> data_f32;
|
|
|
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t length;
|
|
int32_t ftype;
|
|
|
|
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
|
|
if (finp.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[2] = { 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(length, 0);
|
|
finp.read (&name[0], length);
|
|
|
|
{
|
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
|
}
|
|
|
|
// regexes of tensor names to be quantized
|
|
const std::vector<std::string> k_names = {
|
|
".*weight",
|
|
};
|
|
|
|
bool quantize = false;
|
|
for (const auto & s : k_names) {
|
|
if (std::regex_match(name, std::regex(s))) {
|
|
quantize = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// quantize only 2D tensors
|
|
quantize &= (n_dims == 2);
|
|
|
|
if (quantize) {
|
|
if (ftype != 0 && ftype != 1) {
|
|
fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
|
|
return false;
|
|
}
|
|
|
|
if (ftype == 1) {
|
|
data_f16.resize(nelements);
|
|
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
|
|
data_f32.resize(nelements);
|
|
for (int i = 0; i < nelements; ++i) {
|
|
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
|
|
}
|
|
} else {
|
|
data_f32.resize(nelements);
|
|
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
|
|
}
|
|
|
|
ftype = itype;
|
|
} else {
|
|
const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
|
|
|
|
data_u8.resize(nelements*bpe);
|
|
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
|
|
}
|
|
|
|
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
|
|
fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
}
|
|
fout.write(&name[0], length);
|
|
|
|
if (quantize) {
|
|
printf("quantizing .. ");
|
|
work.resize(nelements); // for quantization
|
|
|
|
size_t cur_size = 0;
|
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
|
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], QK, hist_cur.data());
|
|
} break;
|
|
default:
|
|
{
|
|
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
|
|
total_size_new += cur_size;
|
|
|
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
|
|
for (int i = 0; i < hist_cur.size(); ++i) {
|
|
hist_all[i] += hist_cur[i];
|
|
}
|
|
|
|
for (int i = 0; i < hist_cur.size(); ++i) {
|
|
printf("%5.3f ", hist_cur[i] / (float)nelements);
|
|
}
|
|
printf("\n");
|
|
} else {
|
|
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
|
|
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
|
|
total_size_new += data_u8.size();
|
|
}
|
|
|
|
total_size_org += nelements * sizeof(float);
|
|
}
|
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
|
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
|
|
|
{
|
|
int64_t sum_all = 0;
|
|
for (int i = 0; i < hist_all.size(); ++i) {
|
|
sum_all += hist_all[i];
|
|
}
|
|
|
|
printf("%s: hist: ", __func__);
|
|
for (int i = 0; i < hist_all.size(); ++i) {
|
|
printf("%5.3f ", hist_all[i] / (float)sum_all);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
finp.close();
|
|
fout.close();
|
|
|
|
return true;
|
|
}
|
|
|
|
// usage:
|
|
// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
|
//
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
if (argc != 4) {
|
|
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
|
fprintf(stderr, " type = 2 - q4_0\n");
|
|
fprintf(stderr, " type = 3 - q4_1\n");
|
|
return 1;
|
|
}
|
|
|
|
// needed to initialize f16 tables
|
|
{
|
|
struct ggml_init_params params = { 0, NULL };
|
|
struct ggml_context * ctx = ggml_init(params);
|
|
ggml_free(ctx);
|
|
}
|
|
|
|
const std::string fname_inp = argv[1];
|
|
const std::string fname_out = argv[2];
|
|
|
|
const int itype = atoi(argv[3]);
|
|
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
int64_t t_quantize_us = 0;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!llama_model_quantize(fname_inp, fname_out, itype)) {
|
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_quantize_us = ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
printf("\n");
|
|
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
|
}
|
|
|
|
return 0;
|
|
}
|