mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 10:58:56 +01:00
cbef542879
- use f-strings where possible - drop first param of encode/decode functions since "utf-8" is the default
173 lines
6.0 KiB
Python
173 lines
6.0 KiB
Python
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
|
|
# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
|
#
|
|
import os
|
|
import re
|
|
import sys
|
|
import json
|
|
import struct
|
|
import numpy as np
|
|
import torch
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
if len(sys.argv) != 4:
|
|
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
|
|
sys.exit(1)
|
|
|
|
fname_model = sys.argv[1]
|
|
fname_tokenizer = sys.argv[2]
|
|
dir_out = sys.argv[3]
|
|
|
|
model = torch.load(fname_model, map_location="cpu")
|
|
|
|
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
|
|
n_layer = 1 + max(int(m.group(1)) for name in model
|
|
if (m := re.match(r'model\.layers\.([0-9]+)', name)))
|
|
|
|
# hardcoded:
|
|
n_mult = 256
|
|
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
|
|
|
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|
|
|
assert tokenizer.vocab_size() == n_vocab
|
|
|
|
fname_out = sys.argv[3]
|
|
|
|
fout = open(fname_out, "wb")
|
|
|
|
fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex
|
|
fout.write(struct.pack("i", 1)) # file version
|
|
fout.write(struct.pack("i", n_vocab))
|
|
fout.write(struct.pack("i", n_embd))
|
|
fout.write(struct.pack("i", n_mult))
|
|
fout.write(struct.pack("i", n_head))
|
|
fout.write(struct.pack("i", n_layer))
|
|
fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
|
|
fout.write(struct.pack("i", 4))
|
|
|
|
|
|
# This loop unchanged from convert-pth-to-ggml.py:
|
|
for i in range(tokenizer.vocab_size()):
|
|
if tokenizer.is_unknown(i):
|
|
text = " \u2047 ".encode()
|
|
elif tokenizer.is_control(i):
|
|
text = b""
|
|
elif tokenizer.is_byte(i):
|
|
piece = tokenizer.id_to_piece(i)
|
|
if len(piece) != 6:
|
|
print(f"Invalid token: {piece}")
|
|
sys.exit(1)
|
|
byte_value = int(piece[3:-1], 16)
|
|
text = struct.pack("B", byte_value)
|
|
else:
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
|
|
|
def write_header(shape, dst_name, ftype_cur):
|
|
sname = dst_name.encode()
|
|
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
|
|
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
|
fout.write(sname)
|
|
|
|
# ensure tensor data is aligned
|
|
tensor_data_offset = fout.tell()
|
|
tensor_data_offset = (tensor_data_offset + 31) & -32
|
|
fout.seek(tensor_data_offset)
|
|
|
|
def convert_non_q4(src_name, dst_name):
|
|
v = model[src_name]
|
|
shape = v.shape
|
|
print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}")
|
|
if len(shape) == 1:
|
|
print(" Converting to float32")
|
|
v = v.to(torch.float32)
|
|
|
|
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
|
|
|
|
# header
|
|
write_header(shape, dst_name, ftype_cur)
|
|
|
|
# data
|
|
v.numpy().tofile(fout)
|
|
|
|
def convert_q4(src_name, dst_name, permute=False):
|
|
zeros = model[f"{src_name}.zeros"].numpy()
|
|
scales = model[f"{src_name}.scales"].numpy()
|
|
bias = model[f"{src_name}.bias"].numpy()
|
|
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
|
|
|
|
# Q4_1 does not support bias; good thing the bias is always all zeros.
|
|
assert not np.any(bias)
|
|
|
|
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
|
|
shape = (qweight.shape[0], qweight.shape[1] * 8)
|
|
|
|
print(f"Processing Q4 variable: {src_name} with shape: {shape}")
|
|
|
|
# The output format has the int4 weights in groups of 32 rather than 8.
|
|
# It looks like this:
|
|
# For each row:
|
|
# For each group of 32 columns:
|
|
# - addend (float32, 4 bytes)
|
|
# - scale (float32, 4 bytes)
|
|
# - weights (int4 * 32, 16 bytes)
|
|
# Note that in the input, the scales and addends are shared between all
|
|
# the columns in a row, so we end up wasting quite a bit of memory with
|
|
# repeated scales and addends.
|
|
|
|
addends = -zeros # flip sign
|
|
|
|
# Since the output format is mixed between integers and floats, we have
|
|
# to hackily view the floats as int32s just so numpy will let us
|
|
# concatenate them.
|
|
addends_view = addends.view(dtype=np.int32)
|
|
scales_view = scales.view(dtype=np.int32)
|
|
|
|
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
|
|
grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
|
|
|
|
# Repeat addends and scales:
|
|
addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
|
|
scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
|
|
|
|
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
|
|
|
|
if permute:
|
|
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
|
|
# This can be done after the above conversion because it doesn't affect column order/layout.
|
|
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
|
|
.swapaxes(1, 2)
|
|
.reshape(blob.shape))
|
|
|
|
# header
|
|
write_header(shape, dst_name, 3) # ftype = Q4_1
|
|
|
|
# data
|
|
blob.tofile(fout)
|
|
|
|
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
|
|
convert_non_q4("model.norm.weight", "norm.weight")
|
|
convert_non_q4("lm_head.weight", "output.weight")
|
|
|
|
for i in range(n_layer):
|
|
convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
|
|
convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
|
|
convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
|
|
convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
|
|
|
|
convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
|
|
convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
|
|
convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
|
|
|
|
convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
|
|
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
|
|
|
|
|
|
fout.close()
|
|
|
|
print(f"Done. Output file: {fname_out}")
|
|
print()
|