mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 10:58:56 +01:00
e32089b2c2
* add python wrapper https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce * fix decoding error. adds errors=ignore parameter * add python bindings for functions to get and set the whole llama state (rng, logits, embedding and kv_cache) * update python bindings * add text generating baby-llama from scratch example * fix race condition bug in ggml_compute_forward_diag_mask_f32 * implement ggml_soft_max_back for more performant backward pass of soft_max avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss * improve softmax backward pass go from quadratic runtime to linear runtime by simplifying the formulas * fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 memcpy needs to be synchronized across threads to avoid race conditions. => do it in INIT phase * fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build * improve performance of mul_mat backward pass avoid transpose by using mul_mat with swapped arguments * avoid printing too much newlines in baby-llama-text * activate threading in baby-llama-text * add ggml_out_prod and use it for mul_mat backward pass for improved performance performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests * better weight initialization improves training convergence at start * better weight initialization improves training convergence at start * improve ggml_out_prod performance - change iteration order (>15s -> 10s runtime) - parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime) * add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data * fix get_samples call, add model tensor names, increase model size, start training samples after newline * save train trained model to checkpoint and load model to be trained from checkpoint * use inplace functions where possible * initialize rng with srand * use different arguments for input and output checkpoint * ggml fixes to support backward pass on inplace operations * remove duplicate include * fix cross entropy loss - add target probabilities for each sample which is then used in cross entropy loss * print used memory before and after optimization * sample with non-greedy sampling parameters at the end of training * add cmake target for baby-llama-text * add ggml_add1_inplace to header * enable gradient propagation for inplace add1 and scale operations those functions backward passes don't need the original src0, so they also work when forward is inplace * implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f) also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule. setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer. since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer. * use inplace operations in cross_entropy_loss * fix random weight initialization scale * add missing default parameters for adam optimizer * add ggml_opt_context, so that we can properly resume training otherwise the optimizer states, tracking statistics about the error function and its derivates, will reset to zero each time ggml_opt is called, hindering convergence on resumed training. now the optimizer context and all its memory is stored in a separate struct. * fix bug in llama_sample_token_mirostat_v2 when all candidates are filtered out through mu threshold, the following soft_max operation will fail. so keep at least one. * add forward function without using cache, for more performant training during training on whole samples no cache is required. removing the cache and simplifying the remaining code results in performance and memory usage improvement. * print suppressed newline tokens as string "\n" printing too much actual newlines is suppressed to avoid flooding the console. * store optimizer state in training checkpoint and add learning schedule persistent optimizer state allows to resume training without resetting the optimizer learning schedule consists of linear warmup ramp followed by cosine decay with restarts * remove unused functions * fix bug in get_samples which corrupted training targets * save checkpoint only when it was trained * simplify code * remove trailing whitespace * simplify backward pass for SQRT * replace inefficient repeat backward pass with dedicated repeat_back operation * add ggml_cross_entropy_loss with backward pass for faster training cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead. * add tests for cross_entropy_loss backward pass finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient. _probably_ the finite differences fails due to numerical issues * use ggml_cross_entropy_loss in text training example * remove trailing whitespace * slightly improve how cross entropy loss is compute btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log. probably the input to log gets closer to zero due to float numerics. maybe the multiplication by (1.0-eps)/sum is more accurate.. * add llama_get_vocab to get the vocabulary as output parameters * set default model.type for unknown models with few layers * add export of training checkpoint to llama compatible model file * get vocabulary for exporting training checkpoint to llama compatible model file * implement backward pass of flash attention * bugfixes for backward pass of flash attention * test flash attention backward pass need to set loose error bounds to pass. the finitie differences are close to numeric limits and often return quite different values than the backward pass. reducing eps further lets the gradients vanish completely. likewise setting eps to big results in wronger values. the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences. * add option to train with flash attention and move options to the top of the main function training from scratch also works with flash attention training convergence and generation results after fix number of iterations are worse than when not using flash attention. maybe there still lingers a bug in the flash attention backward pass? but training works, just with slower convergence. flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx * add train_params and command line option parser * remove unnecessary comments * add train params to specify memory size * remove python bindings * rename baby-llama-text to train-text-from-scratch * replace auto parameters in lambda function * add #include <climits> * add explicit cast to fix compile error "error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]" * remove trailing whitespace * add ggml_opt_resume_g which accepts forward and backward cgraphs * fix formulas in comments * bug fix for ggml_compute_forward_get_rows_back_f32 the result should be set to zero, not to whatever data is in opt0 * improve training memory usage with scratch buffers instead of relying on the automatic backward pass, we manually create the graph for the backward pass. it turns out that all backward pass operations need only temporary memory which can be reused after each layer. will compute backward pass for ALL model parameters * add option to use scratch buffers in training or not make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters. * ci : disable temporary * store view offset and permute axes in opt[0] instead of storing it in padding use memcpy to store offset, because offset is of type size_t. when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true. * minor : fix compile warnings + minor style changes * fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32 * store view offset like in master branch * bug fix in forward_batch_wo_cache_flash_attn_train * scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train data of permute and reshape is the same as their input. if we want to preserve the output of permute/reshape, we also need to preserve their inputs. replace reshape(src0, src1) with reshape_nd calls so that we don't need src1. replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02). in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls. for this we need backward pass of broadcasting ggml_mul. * remove unnecessary scratch buffer 0 buf 0 is persistent memory, so we can just disable scratch for this by using buf -1 * avoid creating unnecessary grad tensors previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads this wasted memory, because unnecessary grad for each op were automatically created: the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ). this discarded the automatically generated grad resulting in wasted memory. improved this by changing expand(..) to not use ggml_build_forward_expand. expand set cgraph->nodes but not the leafs. cgraph->leafs & cgraph->grads are set in another pass after the last expand call. * print used training seed * zero initialize gfbuf and gbbuf * ci : re-enable workflows + add README for training --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
18040 lines
574 KiB
C
18040 lines
574 KiB
C
// Defines CLOCK_MONOTONIC on Linux
|
|
#define _GNU_SOURCE
|
|
|
|
#include "ggml.h"
|
|
|
|
#ifdef GGML_USE_K_QUANTS
|
|
#include "k_quants.h"
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
#include <malloc.h> // using malloc.h with MSC/MINGW
|
|
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
|
#include <alloca.h>
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <time.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
|
|
#ifdef GGML_USE_METAL
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
// if C99 - static_assert is noop
|
|
// ref: https://stackoverflow.com/a/53923785/4039976
|
|
#ifndef static_assert
|
|
#define static_assert(cond, msg) struct global_scope_noop_trick
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
|
|
#include <windows.h>
|
|
|
|
typedef volatile LONG atomic_int;
|
|
typedef atomic_int atomic_bool;
|
|
|
|
static void atomic_store(atomic_int* ptr, LONG val) {
|
|
InterlockedExchange(ptr, val);
|
|
}
|
|
static LONG atomic_load(atomic_int* ptr) {
|
|
return InterlockedCompareExchange(ptr, 0, 0);
|
|
}
|
|
static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
|
|
return InterlockedExchangeAdd(ptr, inc);
|
|
}
|
|
static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
|
|
return atomic_fetch_add(ptr, -(dec));
|
|
}
|
|
|
|
typedef HANDLE pthread_t;
|
|
|
|
typedef DWORD thread_ret_t;
|
|
static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
|
|
(void) unused;
|
|
HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
|
|
if (handle == NULL)
|
|
{
|
|
return EAGAIN;
|
|
}
|
|
|
|
*out = handle;
|
|
return 0;
|
|
}
|
|
|
|
static int pthread_join(pthread_t thread, void* unused) {
|
|
(void) unused;
|
|
return (int) WaitForSingleObject(thread, INFINITE);
|
|
}
|
|
|
|
static int sched_yield (void) {
|
|
Sleep (0);
|
|
return 0;
|
|
}
|
|
#else
|
|
#include <pthread.h>
|
|
#include <stdatomic.h>
|
|
|
|
typedef void* thread_ret_t;
|
|
#endif
|
|
|
|
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
|
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
|
#ifndef __FMA__
|
|
#define __FMA__
|
|
#endif
|
|
#ifndef __F16C__
|
|
#define __F16C__
|
|
#endif
|
|
#ifndef __SSE3__
|
|
#define __SSE3__
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __HAIKU__
|
|
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
|
#endif
|
|
|
|
/*#define GGML_PERF*/
|
|
#define GGML_DEBUG 0
|
|
#define GGML_GELU_FP16
|
|
#define GGML_SILU_FP16
|
|
|
|
#define GGML_SOFT_MAX_UNROLL 4
|
|
#define GGML_VEC_DOT_UNROLL 2
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
// uncomment to use vDSP for soft max computation
|
|
// note: not sure if it is actually faster
|
|
//#define GGML_SOFT_MAX_ACCELERATE
|
|
#endif
|
|
|
|
#if UINTPTR_MAX == 0xFFFFFFFF
|
|
#define GGML_MEM_ALIGN 4
|
|
#else
|
|
#define GGML_MEM_ALIGN 16
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
|
|
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
|
|
#else
|
|
inline static void* ggml_aligned_malloc(size_t size) {
|
|
void* aligned_memory = NULL;
|
|
#ifdef GGML_USE_METAL
|
|
int result = posix_memalign(&aligned_memory, getpagesize(), size);
|
|
#else
|
|
int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
|
|
#endif
|
|
if (result != 0) {
|
|
// Handle allocation failure
|
|
return NULL;
|
|
}
|
|
return aligned_memory;
|
|
}
|
|
#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
|
|
#define GGML_ALIGNED_FREE(ptr) free(ptr)
|
|
#endif
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
|
|
|
#if defined(GGML_USE_ACCELERATE)
|
|
#include <Accelerate/Accelerate.h>
|
|
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
|
|
#include "ggml-opencl.h"
|
|
#endif
|
|
#elif defined(GGML_USE_OPENBLAS)
|
|
#include <cblas.h>
|
|
#elif defined(GGML_USE_CUBLAS)
|
|
#include "ggml-cuda.h"
|
|
#elif defined(GGML_USE_CLBLAST)
|
|
#include "ggml-opencl.h"
|
|
#endif
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
// floating point type used to accumulate sums
|
|
typedef double ggml_float;
|
|
|
|
// 16-bit float
|
|
// on Arm, we use __fp16
|
|
// on x86, we use uint16_t
|
|
#ifdef __ARM_NEON
|
|
|
|
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
|
//
|
|
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
|
//
|
|
#include <arm_neon.h>
|
|
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
|
|
|
|
#define GGML_FP16_TO_FP32(x) ((float) (x))
|
|
#define GGML_FP32_TO_FP16(x) (x)
|
|
|
|
#else
|
|
|
|
#ifdef __wasm_simd128__
|
|
#include <wasm_simd128.h>
|
|
#else
|
|
#ifdef __POWER9_VECTOR__
|
|
#include <altivec.h>
|
|
#undef bool
|
|
#define bool _Bool
|
|
#else
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
#include <intrin.h>
|
|
#else
|
|
#if !defined(__riscv)
|
|
#include <immintrin.h>
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __F16C__
|
|
|
|
#ifdef _MSC_VER
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
|
|
#else
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
|
#endif
|
|
|
|
#elif defined(__POWER9_VECTOR__)
|
|
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
|
/* the inline asm below is about 12% faster than the lookup method */
|
|
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
|
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
|
|
|
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
|
register float f;
|
|
register double d;
|
|
__asm__(
|
|
"mtfprd %0,%2\n"
|
|
"xscvhpdp %0,%0\n"
|
|
"frsp %1,%0\n" :
|
|
/* temp */ "=d"(d),
|
|
/* out */ "=f"(f):
|
|
/* in */ "r"(h));
|
|
return f;
|
|
}
|
|
|
|
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
|
register double d;
|
|
register ggml_fp16_t r;
|
|
__asm__( /* xscvdphp can work on double or single precision */
|
|
"xscvdphp %0,%2\n"
|
|
"mffprd %1,%0\n" :
|
|
/* temp */ "=d"(d),
|
|
/* out */ "=r"(r):
|
|
/* in */ "f"(f));
|
|
return r;
|
|
}
|
|
|
|
#else
|
|
|
|
// FP16 <-> FP32
|
|
// ref: https://github.com/Maratyszcza/FP16
|
|
|
|
static inline float fp32_from_bits(uint32_t w) {
|
|
union {
|
|
uint32_t as_bits;
|
|
float as_value;
|
|
} fp32;
|
|
fp32.as_bits = w;
|
|
return fp32.as_value;
|
|
}
|
|
|
|
static inline uint32_t fp32_to_bits(float f) {
|
|
union {
|
|
float as_value;
|
|
uint32_t as_bits;
|
|
} fp32;
|
|
fp32.as_value = f;
|
|
return fp32.as_bits;
|
|
}
|
|
|
|
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
|
const uint32_t w = (uint32_t) h << 16;
|
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
|
const uint32_t two_w = w + w;
|
|
|
|
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
|
const float exp_scale = 0x1.0p-112f;
|
|
#else
|
|
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
|
#endif
|
|
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
|
|
|
const uint32_t magic_mask = UINT32_C(126) << 23;
|
|
const float magic_bias = 0.5f;
|
|
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
|
|
|
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
|
const uint32_t result = sign |
|
|
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
|
return fp32_from_bits(result);
|
|
}
|
|
|
|
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
|
const float scale_to_inf = 0x1.0p+112f;
|
|
const float scale_to_zero = 0x1.0p-110f;
|
|
#else
|
|
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
|
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
|
#endif
|
|
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
|
|
|
const uint32_t w = fp32_to_bits(f);
|
|
const uint32_t shl1_w = w + w;
|
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
|
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
|
if (bias < UINT32_C(0x71000000)) {
|
|
bias = UINT32_C(0x71000000);
|
|
}
|
|
|
|
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
|
const uint32_t bits = fp32_to_bits(base);
|
|
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
|
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
|
const uint32_t nonsign = exp_bits + mantissa_bits;
|
|
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
|
}
|
|
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
|
|
|
#endif // __F16C__
|
|
|
|
#endif // __ARM_NEON
|
|
|
|
//
|
|
// global data
|
|
//
|
|
|
|
// precomputed gelu table for f16 (128 KB)
|
|
static ggml_fp16_t table_gelu_f16[1 << 16];
|
|
|
|
// precomputed silu table for f16 (128 KB)
|
|
static ggml_fp16_t table_silu_f16[1 << 16];
|
|
|
|
// precomputed exp table for f16 (128 KB)
|
|
static ggml_fp16_t table_exp_f16[1 << 16];
|
|
|
|
// precomputed f32 table for f16 (256 KB)
|
|
static float table_f32_f16[1 << 16];
|
|
|
|
#if defined(__ARM_NEON) || defined(__wasm_simd128__)
|
|
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
|
|
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
|
|
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
|
|
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
|
|
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
|
|
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
|
|
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
|
|
#define B8(c,s ) B7(c,s, c), B7(c,s, s)
|
|
|
|
// precomputed tables for expanding 8bits to 8 bytes:
|
|
static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
|
|
static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
|
|
#endif
|
|
|
|
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
|
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
|
// This is also true for POWER9.
|
|
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
|
|
|
|
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
|
uint16_t s;
|
|
memcpy(&s, &f, sizeof(uint16_t));
|
|
return table_f32_f16[s];
|
|
}
|
|
|
|
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
|
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
|
|
|
#endif
|
|
|
|
// note: do not use these inside ggml.c
|
|
// these are meant to be used via the ggml.h API
|
|
float ggml_fp16_to_fp32(ggml_fp16_t x) {
|
|
return (float) GGML_FP16_TO_FP32(x);
|
|
}
|
|
|
|
ggml_fp16_t ggml_fp32_to_fp16(float x) {
|
|
return GGML_FP32_TO_FP16(x);
|
|
}
|
|
|
|
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
y[i] = GGML_FP16_TO_FP32(x[i]);
|
|
}
|
|
}
|
|
|
|
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
|
|
size_t i = 0;
|
|
#if defined(__F16C__)
|
|
for (; i + 7 < n; i += 8) {
|
|
__m256 x_vec = _mm256_loadu_ps(x + i);
|
|
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
|
_mm_storeu_si128((__m128i *)(y + i), y_vec);
|
|
}
|
|
for(; i + 3 < n; i += 4) {
|
|
__m128 x_vec = _mm_loadu_ps(x + i);
|
|
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
|
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
|
}
|
|
#endif
|
|
for (; i < n; i++) {
|
|
y[i] = GGML_FP32_TO_FP16(x[i]);
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// timing
|
|
//
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
static int64_t timer_freq, timer_start;
|
|
void ggml_time_init(void) {
|
|
LARGE_INTEGER t;
|
|
QueryPerformanceFrequency(&t);
|
|
timer_freq = t.QuadPart;
|
|
|
|
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
|
|
// and the uptime is high enough.
|
|
// We subtract the program start time to reduce the likelihood of that happening.
|
|
QueryPerformanceCounter(&t);
|
|
timer_start = t.QuadPart;
|
|
}
|
|
int64_t ggml_time_ms(void) {
|
|
LARGE_INTEGER t;
|
|
QueryPerformanceCounter(&t);
|
|
return ((t.QuadPart-timer_start) * 1000) / timer_freq;
|
|
}
|
|
int64_t ggml_time_us(void) {
|
|
LARGE_INTEGER t;
|
|
QueryPerformanceCounter(&t);
|
|
return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
|
|
}
|
|
#else
|
|
void ggml_time_init(void) {}
|
|
int64_t ggml_time_ms(void) {
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
|
|
}
|
|
|
|
int64_t ggml_time_us(void) {
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
|
|
}
|
|
#endif
|
|
|
|
int64_t ggml_cycles(void) {
|
|
return clock();
|
|
}
|
|
|
|
int64_t ggml_cycles_per_ms(void) {
|
|
return CLOCKS_PER_SEC/1000;
|
|
}
|
|
|
|
#ifdef GGML_PERF
|
|
#define ggml_perf_time_ms() ggml_time_ms()
|
|
#define ggml_perf_time_us() ggml_time_us()
|
|
#define ggml_perf_cycles() ggml_cycles()
|
|
#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
|
|
#else
|
|
#define ggml_perf_time_ms() 0
|
|
#define ggml_perf_time_us() 0
|
|
#define ggml_perf_cycles() 0
|
|
#define ggml_perf_cycles_per_ms() 0
|
|
#endif
|
|
|
|
//
|
|
// cache line
|
|
//
|
|
|
|
#if defined(__cpp_lib_hardware_interference_size)
|
|
#define CACHE_LINE_SIZE hardware_destructive_interference_size
|
|
#else
|
|
#if defined(__POWER9_VECTOR__)
|
|
#define CACHE_LINE_SIZE 128
|
|
#else
|
|
#define CACHE_LINE_SIZE 64
|
|
#endif
|
|
#endif
|
|
|
|
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
|
|
|
|
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
|
|
// multiply int8_t, add results pairwise twice
|
|
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
|
|
// Get absolute values of x vectors
|
|
const __m128i ax = _mm_sign_epi8(x, x);
|
|
// Sign the values of the y vectors
|
|
const __m128i sy = _mm_sign_epi8(y, x);
|
|
// Perform multiplication and create 16-bit values
|
|
const __m128i dot = _mm_maddubs_epi16(ax, sy);
|
|
const __m128i ones = _mm_set1_epi16(1);
|
|
return _mm_madd_epi16(ones, dot);
|
|
}
|
|
|
|
#if __AVX__ || __AVX2__ || __AVX512F__
|
|
// horizontally add 8 floats
|
|
static inline float hsum_float_8(const __m256 x) {
|
|
__m128 res = _mm256_extractf128_ps(x, 1);
|
|
res = _mm_add_ps(res, _mm256_castps256_ps128(x));
|
|
res = _mm_add_ps(res, _mm_movehl_ps(res, res));
|
|
res = _mm_add_ss(res, _mm_movehdup_ps(res));
|
|
return _mm_cvtss_f32(res);
|
|
}
|
|
|
|
// horizontally add 8 int32_t
|
|
static inline int hsum_i32_8(const __m256i a) {
|
|
const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
|
|
const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
|
|
const __m128i sum64 = _mm_add_epi32(hi64, sum128);
|
|
const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
|
|
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
|
|
}
|
|
|
|
// horizontally add 4 int32_t
|
|
static inline int hsum_i32_4(const __m128i a) {
|
|
const __m128i hi64 = _mm_unpackhi_epi64(a, a);
|
|
const __m128i sum64 = _mm_add_epi32(hi64, a);
|
|
const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
|
|
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
|
|
}
|
|
|
|
#if defined(__AVX2__) || defined(__AVX512F__)
|
|
// spread 32 bits to 32 bytes { 0x00, 0xFF }
|
|
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
|
|
uint32_t x32;
|
|
memcpy(&x32, x, sizeof(uint32_t));
|
|
const __m256i shuf_mask = _mm256_set_epi64x(
|
|
0x0303030303030303, 0x0202020202020202,
|
|
0x0101010101010101, 0x0000000000000000);
|
|
__m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
|
|
const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
|
|
bytes = _mm256_or_si256(bytes, bit_mask);
|
|
return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
|
|
}
|
|
|
|
// Unpack 32 4-bit fields into 32 bytes
|
|
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
|
|
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
|
|
{
|
|
const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
|
|
const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
|
|
const __m256i lowMask = _mm256_set1_epi8( 0xF );
|
|
return _mm256_and_si256(lowMask, bytes);
|
|
}
|
|
|
|
// add int16_t pairwise and return as float vector
|
|
static inline __m256 sum_i16_pairs_float(const __m256i x) {
|
|
const __m256i ones = _mm256_set1_epi16(1);
|
|
const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
|
|
return _mm256_cvtepi32_ps(summed_pairs);
|
|
}
|
|
|
|
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
|
|
#if __AVXVNNI__
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
|
|
return _mm256_cvtepi32_ps(summed_pairs);
|
|
#else
|
|
// Perform multiplication and create 16-bit values
|
|
const __m256i dot = _mm256_maddubs_epi16(ax, sy);
|
|
return sum_i16_pairs_float(dot);
|
|
#endif
|
|
}
|
|
|
|
// multiply int8_t, add results pairwise twice and return as float vector
|
|
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
|
|
#if __AVXVNNIINT8__
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
|
|
return _mm256_cvtepi32_ps(summed_pairs);
|
|
#else
|
|
// Get absolute values of x vectors
|
|
const __m256i ax = _mm256_sign_epi8(x, x);
|
|
// Sign the values of the y vectors
|
|
const __m256i sy = _mm256_sign_epi8(y, x);
|
|
return mul_sum_us8_pairs_float(ax, sy);
|
|
#endif
|
|
}
|
|
|
|
static inline __m128i packNibbles( __m256i bytes )
|
|
{
|
|
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
|
|
#if __AVX512F__
|
|
const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
|
|
bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
|
|
return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
|
|
#else
|
|
const __m256i lowByte = _mm256_set1_epi16( 0xFF );
|
|
__m256i high = _mm256_andnot_si256( lowByte, bytes );
|
|
__m256i low = _mm256_and_si256( lowByte, bytes );
|
|
high = _mm256_srli_epi16( high, 4 );
|
|
bytes = _mm256_or_si256( low, high );
|
|
|
|
// Compress uint16_t lanes into bytes
|
|
__m128i r0 = _mm256_castsi256_si128( bytes );
|
|
__m128i r1 = _mm256_extracti128_si256( bytes, 1 );
|
|
return _mm_packus_epi16( r0, r1 );
|
|
#endif
|
|
}
|
|
#elif defined(__AVX__)
|
|
// spread 32 bits to 32 bytes { 0x00, 0xFF }
|
|
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
|
|
uint32_t x32;
|
|
memcpy(&x32, x, sizeof(uint32_t));
|
|
const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
|
|
const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
|
|
__m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
|
|
__m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
|
|
const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
|
|
bytesl = _mm_or_si128(bytesl, bit_mask);
|
|
bytesh = _mm_or_si128(bytesh, bit_mask);
|
|
bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
|
|
bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
|
|
return MM256_SET_M128I(bytesh, bytesl);
|
|
}
|
|
|
|
// Unpack 32 4-bit fields into 32 bytes
|
|
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
|
|
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
|
|
{
|
|
// Load 16 bytes from memory
|
|
__m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
|
|
__m128i tmph = _mm_srli_epi16(tmpl, 4);
|
|
const __m128i lowMask = _mm_set1_epi8(0xF);
|
|
tmpl = _mm_and_si128(lowMask, tmpl);
|
|
tmph = _mm_and_si128(lowMask, tmph);
|
|
return MM256_SET_M128I(tmph, tmpl);
|
|
}
|
|
|
|
// add int16_t pairwise and return as float vector
|
|
static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
|
|
const __m128i ones = _mm_set1_epi16(1);
|
|
const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
|
|
const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
|
|
const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
|
|
return _mm256_cvtepi32_ps(summed_pairs);
|
|
}
|
|
|
|
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
|
|
const __m128i axl = _mm256_castsi256_si128(ax);
|
|
const __m128i axh = _mm256_extractf128_si256(ax, 1);
|
|
const __m128i syl = _mm256_castsi256_si128(sy);
|
|
const __m128i syh = _mm256_extractf128_si256(sy, 1);
|
|
// Perform multiplication and create 16-bit values
|
|
const __m128i dotl = _mm_maddubs_epi16(axl, syl);
|
|
const __m128i doth = _mm_maddubs_epi16(axh, syh);
|
|
return sum_i16_pairs_float(doth, dotl);
|
|
}
|
|
|
|
// multiply int8_t, add results pairwise twice and return as float vector
|
|
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
|
|
const __m128i xl = _mm256_castsi256_si128(x);
|
|
const __m128i xh = _mm256_extractf128_si256(x, 1);
|
|
const __m128i yl = _mm256_castsi256_si128(y);
|
|
const __m128i yh = _mm256_extractf128_si256(y, 1);
|
|
// Get absolute values of x vectors
|
|
const __m128i axl = _mm_sign_epi8(xl, xl);
|
|
const __m128i axh = _mm_sign_epi8(xh, xh);
|
|
// Sign the values of the y vectors
|
|
const __m128i syl = _mm_sign_epi8(yl, xl);
|
|
const __m128i syh = _mm_sign_epi8(yh, xh);
|
|
// Perform multiplication and create 16-bit values
|
|
const __m128i dotl = _mm_maddubs_epi16(axl, syl);
|
|
const __m128i doth = _mm_maddubs_epi16(axh, syh);
|
|
return sum_i16_pairs_float(doth, dotl);
|
|
}
|
|
|
|
static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
|
|
{
|
|
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
|
|
const __m128i lowByte = _mm_set1_epi16( 0xFF );
|
|
__m128i high = _mm_andnot_si128( lowByte, bytes1 );
|
|
__m128i low = _mm_and_si128( lowByte, bytes1 );
|
|
high = _mm_srli_epi16( high, 4 );
|
|
bytes1 = _mm_or_si128( low, high );
|
|
high = _mm_andnot_si128( lowByte, bytes2 );
|
|
low = _mm_and_si128( lowByte, bytes2 );
|
|
high = _mm_srli_epi16( high, 4 );
|
|
bytes2 = _mm_or_si128( low, high );
|
|
|
|
return _mm_packus_epi16( bytes1, bytes2);
|
|
}
|
|
#endif
|
|
#elif defined(__SSSE3__)
|
|
// horizontally add 4x4 floats
|
|
static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
|
|
__m128 res_0 =_mm_hadd_ps(a, b);
|
|
__m128 res_1 =_mm_hadd_ps(c, d);
|
|
__m128 res =_mm_hadd_ps(res_0, res_1);
|
|
res =_mm_hadd_ps(res, res);
|
|
res =_mm_hadd_ps(res, res);
|
|
|
|
return _mm_cvtss_f32(res);
|
|
}
|
|
#endif // __AVX__ || __AVX2__ || __AVX512F__
|
|
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
|
|
|
|
#if defined(__ARM_NEON)
|
|
|
|
#if !defined(__aarch64__)
|
|
|
|
inline static uint16_t vaddvq_u8(uint8x16_t v) {
|
|
return
|
|
(uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
|
|
(uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
|
|
(uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
|
|
(uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
|
|
(uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
|
|
(uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
|
|
(uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
|
|
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
|
|
}
|
|
|
|
inline static int16_t vaddvq_s8(int8x16_t v) {
|
|
return
|
|
(int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
|
|
(int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
|
|
(int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
|
|
(int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
|
|
(int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
|
|
(int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
|
|
(int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
|
|
(int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
|
|
}
|
|
|
|
inline static int32_t vaddvq_s16(int16x8_t v) {
|
|
return
|
|
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
|
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
|
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
|
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
|
}
|
|
|
|
inline static uint32_t vaddvq_u16(uint16x8_t v) {
|
|
return
|
|
(uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
|
|
(uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
|
|
(uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
|
|
(uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
|
|
}
|
|
|
|
inline static int32_t vaddvq_s32(int32x4_t v) {
|
|
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
|
}
|
|
|
|
inline static float vaddvq_f32(float32x4_t v) {
|
|
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
|
}
|
|
|
|
inline static float vminvq_f32(float32x4_t v) {
|
|
return
|
|
MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
|
MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
|
}
|
|
|
|
inline static float vmaxvq_f32(float32x4_t v) {
|
|
return
|
|
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
|
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
|
}
|
|
|
|
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
|
int32x4_t res;
|
|
|
|
res[0] = roundf(vgetq_lane_f32(v, 0));
|
|
res[1] = roundf(vgetq_lane_f32(v, 1));
|
|
res[2] = roundf(vgetq_lane_f32(v, 2));
|
|
res[3] = roundf(vgetq_lane_f32(v, 3));
|
|
|
|
return res;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#define QK4_0 32
|
|
typedef struct {
|
|
ggml_fp16_t d; // delta
|
|
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
} block_q4_0;
|
|
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
|
|
|
#define QK4_1 32
|
|
typedef struct {
|
|
ggml_fp16_t d; // delta
|
|
ggml_fp16_t m; // min
|
|
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
|
} block_q4_1;
|
|
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
|
|
|
|
#define QK5_0 32
|
|
typedef struct {
|
|
ggml_fp16_t d; // delta
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_0 / 2]; // nibbles / quants
|
|
} block_q5_0;
|
|
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
|
|
|
|
#define QK5_1 32
|
|
typedef struct {
|
|
ggml_fp16_t d; // delta
|
|
ggml_fp16_t m; // min
|
|
uint8_t qh[4]; // 5-th bit of quants
|
|
uint8_t qs[QK5_1 / 2]; // nibbles / quants
|
|
} block_q5_1;
|
|
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
|
|
|
|
#define QK8_0 32
|
|
typedef struct {
|
|
ggml_fp16_t d; // delta
|
|
int8_t qs[QK8_0]; // quants
|
|
} block_q8_0;
|
|
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
|
|
|
#define QK8_1 32
|
|
typedef struct {
|
|
float d; // delta
|
|
float s; // d * sum(qs[i])
|
|
int8_t qs[QK8_1]; // quants
|
|
} block_q8_1;
|
|
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
|
|
|
|
// reference implementation for deterministic creation of model files
|
|
static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
|
|
static const int qk = QK4_0;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float amax = 0.0f; // absolute max
|
|
float max = 0.0f;
|
|
|
|
for (int j = 0; j < qk; j++) {
|
|
const float v = x[i*qk + j];
|
|
if (amax < fabsf(v)) {
|
|
amax = fabsf(v);
|
|
max = v;
|
|
}
|
|
}
|
|
|
|
const float d = max / -8;
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const float x0 = x[i*qk + 0 + j]*id;
|
|
const float x1 = x[i*qk + qk/2 + j]*id;
|
|
|
|
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
|
|
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
|
|
|
|
y[i].qs[j] = xi0;
|
|
y[i].qs[j] |= xi1 << 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
|
|
quantize_row_q4_0_reference(x, y, k);
|
|
}
|
|
|
|
static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
|
|
const int qk = QK4_1;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float min = FLT_MAX;
|
|
float max = -FLT_MAX;
|
|
|
|
for (int j = 0; j < qk; j++) {
|
|
const float v = x[i*qk + j];
|
|
|
|
if (v < min) min = v;
|
|
if (v > max) max = v;
|
|
}
|
|
|
|
const float d = (max - min) / ((1 << 4) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
y[i].m = GGML_FP32_TO_FP16(min);
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const float x0 = (x[i*qk + 0 + j] - min)*id;
|
|
const float x1 = (x[i*qk + qk/2 + j] - min)*id;
|
|
|
|
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
|
|
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
|
|
|
|
y[i].qs[j] = xi0;
|
|
y[i].qs[j] |= xi1 << 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
|
|
quantize_row_q4_1_reference(x, y, k);
|
|
}
|
|
|
|
static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
|
|
static const int qk = QK5_0;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float amax = 0.0f; // absolute max
|
|
float max = 0.0f;
|
|
|
|
for (int j = 0; j < qk; j++) {
|
|
const float v = x[i*qk + j];
|
|
if (amax < fabsf(v)) {
|
|
amax = fabsf(v);
|
|
max = v;
|
|
}
|
|
}
|
|
|
|
const float d = max / -16;
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
uint32_t qh = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const float x0 = x[i*qk + 0 + j]*id;
|
|
const float x1 = x[i*qk + qk/2 + j]*id;
|
|
|
|
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
|
|
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
|
|
|
|
y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
|
|
|
|
// get the 5-th bit and store it in qh at the right position
|
|
qh |= ((xi0 & 0x10) >> 4) << (j + 0);
|
|
qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
|
|
}
|
|
|
|
memcpy(&y[i].qh, &qh, sizeof(qh));
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
|
|
quantize_row_q5_0_reference(x, y, k);
|
|
}
|
|
|
|
static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
|
|
const int qk = QK5_1;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float min = FLT_MAX;
|
|
float max = -FLT_MAX;
|
|
|
|
for (int j = 0; j < qk; j++) {
|
|
const float v = x[i*qk + j];
|
|
|
|
if (v < min) min = v;
|
|
if (v > max) max = v;
|
|
}
|
|
|
|
const float d = (max - min) / ((1 << 5) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
y[i].m = GGML_FP32_TO_FP16(min);
|
|
|
|
uint32_t qh = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const float x0 = (x[i*qk + 0 + j] - min)*id;
|
|
const float x1 = (x[i*qk + qk/2 + j] - min)*id;
|
|
|
|
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
|
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
|
|
|
y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
|
|
|
|
// get the 5-th bit and store it in qh at the right position
|
|
qh |= ((xi0 & 0x10) >> 4) << (j + 0);
|
|
qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
|
|
}
|
|
|
|
memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
|
|
quantize_row_q5_1_reference(x, y, k);
|
|
}
|
|
|
|
// reference implementation for deterministic creation of model files
|
|
static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
|
|
assert(k % QK8_0 == 0);
|
|
const int nb = k / QK8_0;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float amax = 0.0f; // absolute max
|
|
|
|
for (int j = 0; j < QK8_0; j++) {
|
|
const float v = x[i*QK8_0 + j];
|
|
amax = MAX(amax, fabsf(v));
|
|
}
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
for (int j = 0; j < QK8_0; ++j) {
|
|
const float x0 = x[i*QK8_0 + j]*id;
|
|
|
|
y[i].qs[j] = roundf(x0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
|
|
assert(QK8_0 == 32);
|
|
assert(k % QK8_0 == 0);
|
|
const int nb = k / QK8_0;
|
|
|
|
block_q8_0 * restrict y = vy;
|
|
|
|
#if defined(__ARM_NEON)
|
|
for (int i = 0; i < nb; i++) {
|
|
float32x4_t srcv [8];
|
|
float32x4_t asrcv[8];
|
|
float32x4_t amaxv[8];
|
|
|
|
for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
|
|
for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
|
|
|
|
for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
|
|
for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
|
|
for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
|
|
|
|
const float amax = vmaxvq_f32(amaxv[0]);
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
const float32x4_t v = vmulq_n_f32(srcv[j], id);
|
|
const int32x4_t vi = vcvtnq_s32_f32(v);
|
|
|
|
y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
|
|
y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
|
|
y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
|
|
y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
|
|
}
|
|
}
|
|
#elif defined(__wasm_simd128__)
|
|
for (int i = 0; i < nb; i++) {
|
|
v128_t srcv [8];
|
|
v128_t asrcv[8];
|
|
v128_t amaxv[8];
|
|
|
|
for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
|
|
for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
|
|
|
|
for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
|
|
for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
|
|
for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
|
|
|
|
const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
|
|
wasm_f32x4_extract_lane(amaxv[0], 1)),
|
|
MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
|
|
wasm_f32x4_extract_lane(amaxv[0], 3)));
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
|
|
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
|
|
|
|
y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
|
|
y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
|
|
y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
|
|
y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
|
|
}
|
|
}
|
|
#elif defined(__AVX2__) || defined(__AVX__)
|
|
for (int i = 0; i < nb; i++) {
|
|
// Load elements into 4 AVX vectors
|
|
__m256 v0 = _mm256_loadu_ps( x );
|
|
__m256 v1 = _mm256_loadu_ps( x + 8 );
|
|
__m256 v2 = _mm256_loadu_ps( x + 16 );
|
|
__m256 v3 = _mm256_loadu_ps( x + 24 );
|
|
x += 32;
|
|
|
|
// Compute max(abs(e)) for the block
|
|
const __m256 signBit = _mm256_set1_ps( -0.0f );
|
|
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
|
|
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
|
|
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
|
|
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
|
|
|
|
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
|
|
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
|
|
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
|
|
const float maxScalar = _mm_cvtss_f32( max4 );
|
|
|
|
// Quantize these floats
|
|
const float d = maxScalar / 127.f;
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
|
|
const __m256 mul = _mm256_set1_ps( id );
|
|
|
|
// Apply the multiplier
|
|
v0 = _mm256_mul_ps( v0, mul );
|
|
v1 = _mm256_mul_ps( v1, mul );
|
|
v2 = _mm256_mul_ps( v2, mul );
|
|
v3 = _mm256_mul_ps( v3, mul );
|
|
|
|
// Round to nearest integer
|
|
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
|
|
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
|
|
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
|
|
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
|
|
|
|
// Convert floats to integers
|
|
__m256i i0 = _mm256_cvtps_epi32( v0 );
|
|
__m256i i1 = _mm256_cvtps_epi32( v1 );
|
|
__m256i i2 = _mm256_cvtps_epi32( v2 );
|
|
__m256i i3 = _mm256_cvtps_epi32( v3 );
|
|
|
|
#if defined(__AVX2__)
|
|
// Convert int32 to int16
|
|
i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
|
|
i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
|
|
// Convert int16 to int8
|
|
i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
|
|
|
|
// We got our precious signed bytes, but the order is now wrong
|
|
// These AVX2 pack instructions process 16-byte pieces independently
|
|
// The following instruction is fixing the order
|
|
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
|
|
i0 = _mm256_permutevar8x32_epi32( i0, perm );
|
|
|
|
_mm256_storeu_si256((__m256i *)y[i].qs, i0);
|
|
#else
|
|
// Since we don't have in AVX some necessary functions,
|
|
// we split the registers in half and call AVX2 analogs from SSE
|
|
__m128i ni0 = _mm256_castsi256_si128( i0 );
|
|
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
|
|
__m128i ni2 = _mm256_castsi256_si128( i1 );
|
|
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
|
|
__m128i ni4 = _mm256_castsi256_si128( i2 );
|
|
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
|
|
__m128i ni6 = _mm256_castsi256_si128( i3 );
|
|
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
|
|
|
|
// Convert int32 to int16
|
|
ni0 = _mm_packs_epi32( ni0, ni1 );
|
|
ni2 = _mm_packs_epi32( ni2, ni3 );
|
|
ni4 = _mm_packs_epi32( ni4, ni5 );
|
|
ni6 = _mm_packs_epi32( ni6, ni7 );
|
|
// Convert int16 to int8
|
|
ni0 = _mm_packs_epi16( ni0, ni2 );
|
|
ni4 = _mm_packs_epi16( ni4, ni6 );
|
|
|
|
_mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
|
|
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
|
|
#endif
|
|
}
|
|
#else
|
|
// scalar
|
|
quantize_row_q8_0_reference(x, y, k);
|
|
#endif
|
|
}
|
|
|
|
// reference implementation for deterministic creation of model files
|
|
static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
|
|
assert(QK8_1 == 32);
|
|
assert(k % QK8_1 == 0);
|
|
const int nb = k / QK8_1;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float amax = 0.0f; // absolute max
|
|
|
|
for (int j = 0; j < QK8_1; j++) {
|
|
const float v = x[i*QK8_1 + j];
|
|
amax = MAX(amax, fabsf(v));
|
|
}
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = d;
|
|
|
|
int sum = 0;
|
|
|
|
for (int j = 0; j < QK8_1/2; ++j) {
|
|
const float v0 = x[i*QK8_1 + j]*id;
|
|
const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
|
|
|
|
y[i].qs[ j] = roundf(v0);
|
|
y[i].qs[QK8_1/2 + j] = roundf(v1);
|
|
|
|
sum += y[i].qs[ j];
|
|
sum += y[i].qs[QK8_1/2 + j];
|
|
}
|
|
|
|
y[i].s = sum*d;
|
|
}
|
|
}
|
|
|
|
static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
|
|
assert(k % QK8_1 == 0);
|
|
const int nb = k / QK8_1;
|
|
|
|
block_q8_1 * restrict y = vy;
|
|
|
|
#if defined(__ARM_NEON)
|
|
for (int i = 0; i < nb; i++) {
|
|
float32x4_t srcv [8];
|
|
float32x4_t asrcv[8];
|
|
float32x4_t amaxv[8];
|
|
|
|
for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
|
|
for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
|
|
|
|
for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
|
|
for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
|
|
for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
|
|
|
|
const float amax = vmaxvq_f32(amaxv[0]);
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = d;
|
|
|
|
int32x4_t accv = vdupq_n_s32(0);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
const float32x4_t v = vmulq_n_f32(srcv[j], id);
|
|
const int32x4_t vi = vcvtnq_s32_f32(v);
|
|
|
|
y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
|
|
y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
|
|
y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
|
|
y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
|
|
|
|
accv = vaddq_s32(accv, vi);
|
|
}
|
|
|
|
y[i].s = d * vaddvq_s32(accv);
|
|
}
|
|
#elif defined(__wasm_simd128__)
|
|
for (int i = 0; i < nb; i++) {
|
|
v128_t srcv [8];
|
|
v128_t asrcv[8];
|
|
v128_t amaxv[8];
|
|
|
|
for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
|
|
for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
|
|
|
|
for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
|
|
for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
|
|
for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
|
|
|
|
const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
|
|
wasm_f32x4_extract_lane(amaxv[0], 1)),
|
|
MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
|
|
wasm_f32x4_extract_lane(amaxv[0], 3)));
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = d;
|
|
|
|
v128_t accv = wasm_i32x4_splat(0);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
|
|
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
|
|
|
|
y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
|
|
y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
|
|
y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
|
|
y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
|
|
|
|
accv = wasm_i32x4_add(accv, vi);
|
|
}
|
|
|
|
y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
|
|
wasm_i32x4_extract_lane(accv, 1) +
|
|
wasm_i32x4_extract_lane(accv, 2) +
|
|
wasm_i32x4_extract_lane(accv, 3));
|
|
}
|
|
#elif defined(__AVX2__) || defined(__AVX__)
|
|
for (int i = 0; i < nb; i++) {
|
|
// Load elements into 4 AVX vectors
|
|
__m256 v0 = _mm256_loadu_ps( x );
|
|
__m256 v1 = _mm256_loadu_ps( x + 8 );
|
|
__m256 v2 = _mm256_loadu_ps( x + 16 );
|
|
__m256 v3 = _mm256_loadu_ps( x + 24 );
|
|
x += 32;
|
|
|
|
// Compute max(abs(e)) for the block
|
|
const __m256 signBit = _mm256_set1_ps( -0.0f );
|
|
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
|
|
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
|
|
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
|
|
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
|
|
|
|
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
|
|
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
|
|
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
|
|
const float maxScalar = _mm_cvtss_f32( max4 );
|
|
|
|
// Quantize these floats
|
|
const float d = maxScalar / 127.f;
|
|
y[i].d = d;
|
|
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
|
|
const __m256 mul = _mm256_set1_ps( id );
|
|
|
|
// Apply the multiplier
|
|
v0 = _mm256_mul_ps( v0, mul );
|
|
v1 = _mm256_mul_ps( v1, mul );
|
|
v2 = _mm256_mul_ps( v2, mul );
|
|
v3 = _mm256_mul_ps( v3, mul );
|
|
|
|
// Round to nearest integer
|
|
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
|
|
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
|
|
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
|
|
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
|
|
|
|
// Convert floats to integers
|
|
__m256i i0 = _mm256_cvtps_epi32( v0 );
|
|
__m256i i1 = _mm256_cvtps_epi32( v1 );
|
|
__m256i i2 = _mm256_cvtps_epi32( v2 );
|
|
__m256i i3 = _mm256_cvtps_epi32( v3 );
|
|
|
|
#if defined(__AVX2__)
|
|
// Compute the sum of the quants and set y[i].s
|
|
y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
|
|
|
|
// Convert int32 to int16
|
|
i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
|
|
i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
|
|
// Convert int16 to int8
|
|
i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
|
|
|
|
// We got our precious signed bytes, but the order is now wrong
|
|
// These AVX2 pack instructions process 16-byte pieces independently
|
|
// The following instruction is fixing the order
|
|
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
|
|
i0 = _mm256_permutevar8x32_epi32( i0, perm );
|
|
|
|
_mm256_storeu_si256((__m256i *)y[i].qs, i0);
|
|
#else
|
|
// Since we don't have in AVX some necessary functions,
|
|
// we split the registers in half and call AVX2 analogs from SSE
|
|
__m128i ni0 = _mm256_castsi256_si128( i0 );
|
|
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
|
|
__m128i ni2 = _mm256_castsi256_si128( i1 );
|
|
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
|
|
__m128i ni4 = _mm256_castsi256_si128( i2 );
|
|
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
|
|
__m128i ni6 = _mm256_castsi256_si128( i3 );
|
|
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
|
|
|
|
// Compute the sum of the quants and set y[i].s
|
|
const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
|
|
const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
|
|
y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
|
|
|
|
// Convert int32 to int16
|
|
ni0 = _mm_packs_epi32( ni0, ni1 );
|
|
ni2 = _mm_packs_epi32( ni2, ni3 );
|
|
ni4 = _mm_packs_epi32( ni4, ni5 );
|
|
ni6 = _mm_packs_epi32( ni6, ni7 );
|
|
// Convert int16 to int8
|
|
ni0 = _mm_packs_epi16( ni0, ni2 );
|
|
ni4 = _mm_packs_epi16( ni4, ni6 );
|
|
|
|
_mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
|
|
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
|
|
#endif
|
|
}
|
|
#else
|
|
// scalar
|
|
quantize_row_q8_1_reference(x, y, k);
|
|
#endif
|
|
}
|
|
|
|
static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
|
|
static const int qk = QK4_0;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const float d = GGML_FP16_TO_FP32(x[i].d);
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const int x0 = (x[i].qs[j] & 0x0F) - 8;
|
|
const int x1 = (x[i].qs[j] >> 4) - 8;
|
|
|
|
y[i*qk + j + 0 ] = x0*d;
|
|
y[i*qk + j + qk/2] = x1*d;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
|
|
static const int qk = QK4_1;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const float d = GGML_FP16_TO_FP32(x[i].d);
|
|
const float m = GGML_FP16_TO_FP32(x[i].m);
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const int x0 = (x[i].qs[j] & 0x0F);
|
|
const int x1 = (x[i].qs[j] >> 4);
|
|
|
|
y[i*qk + j + 0 ] = x0*d + m;
|
|
y[i*qk + j + qk/2] = x1*d + m;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
|
|
static const int qk = QK5_0;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const float d = GGML_FP16_TO_FP32(x[i].d);
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[i].qh, sizeof(qh));
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
|
|
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
|
|
|
|
y[i*qk + j + 0 ] = x0*d;
|
|
y[i*qk + j + qk/2] = x1*d;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
|
|
static const int qk = QK5_1;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const float d = GGML_FP16_TO_FP32(x[i].d);
|
|
const float m = GGML_FP16_TO_FP32(x[i].m);
|
|
|
|
uint32_t qh;
|
|
memcpy(&qh, x[i].qh, sizeof(qh));
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
|
|
|
const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
|
|
const int x1 = (x[i].qs[j] >> 4) | xh_1;
|
|
|
|
y[i*qk + j + 0 ] = x0*d + m;
|
|
y[i*qk + j + qk/2] = x1*d + m;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
|
|
static const int qk = QK8_0;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
const block_q8_0 * restrict x = vx;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const float d = GGML_FP16_TO_FP32(x[i].d);
|
|
|
|
for (int j = 0; j < qk; ++j) {
|
|
y[i*qk + j] = x[i].qs[j]*d;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
|
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
|
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
|
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
|
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
|
|
|
static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
|
|
[GGML_TYPE_Q4_0] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
|
|
.quantize_row_q = quantize_row_q4_0,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_0,
|
|
.vec_dot_q = ggml_vec_dot_q4_0_q8_0,
|
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
|
},
|
|
[GGML_TYPE_Q4_1] = {
|
|
.dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
|
|
.quantize_row_q = quantize_row_q4_1,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_1,
|
|
.vec_dot_q = ggml_vec_dot_q4_1_q8_1,
|
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
|
},
|
|
[GGML_TYPE_Q5_0] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
|
|
.quantize_row_q = quantize_row_q5_0,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_0,
|
|
.vec_dot_q = ggml_vec_dot_q5_0_q8_0,
|
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
|
},
|
|
[GGML_TYPE_Q5_1] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
|
|
.quantize_row_q = quantize_row_q5_1,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_1,
|
|
.vec_dot_q = ggml_vec_dot_q5_1_q8_1,
|
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
|
},
|
|
[GGML_TYPE_Q8_0] = {
|
|
.dequantize_row_q = dequantize_row_q8_0,
|
|
.quantize_row_q = quantize_row_q8_0,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_0,
|
|
.vec_dot_q = ggml_vec_dot_q8_0_q8_0,
|
|
.vec_dot_type = GGML_TYPE_Q8_0,
|
|
},
|
|
[GGML_TYPE_Q8_1] = {
|
|
.dequantize_row_q = NULL, // TODO
|
|
.quantize_row_q = quantize_row_q8_1,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_1,
|
|
.vec_dot_q = NULL, // TODO
|
|
.vec_dot_type = GGML_TYPE_Q8_1,
|
|
},
|
|
#ifdef GGML_USE_K_QUANTS
|
|
[GGML_TYPE_Q2_K] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
|
|
.quantize_row_q = quantize_row_q2_K,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_K,
|
|
.vec_dot_q = ggml_vec_dot_q2_K_q8_K,
|
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
|
},
|
|
[GGML_TYPE_Q3_K] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
|
|
.quantize_row_q = quantize_row_q3_K,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_K,
|
|
.vec_dot_q = ggml_vec_dot_q3_K_q8_K,
|
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
|
},
|
|
[GGML_TYPE_Q4_K] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
|
|
.quantize_row_q = quantize_row_q4_K,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_K,
|
|
.vec_dot_q = ggml_vec_dot_q4_K_q8_K,
|
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
|
},
|
|
[GGML_TYPE_Q5_K] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
|
|
.quantize_row_q = quantize_row_q5_K,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_K,
|
|
.vec_dot_q = ggml_vec_dot_q5_K_q8_K,
|
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
|
},
|
|
[GGML_TYPE_Q6_K] = {
|
|
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
|
|
.quantize_row_q = quantize_row_q6_K,
|
|
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
|
|
.quantize_row_q_dot = quantize_row_q8_K,
|
|
.vec_dot_q = ggml_vec_dot_q6_K_q8_K,
|
|
.vec_dot_type = GGML_TYPE_Q8_K,
|
|
},
|
|
#endif
|
|
};
|
|
|
|
// For internal test use
|
|
quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
|
|
GGML_ASSERT(i < GGML_TYPE_COUNT);
|
|
return quantize_fns[i];
|
|
}
|
|
|
|
|
|
//
|
|
// simd mappings
|
|
//
|
|
|
|
// we define a common set of C macros which map to specific intrinsics based on the current architecture
|
|
// we then implement the fundamental computation operations below using only these macros
|
|
// adding support for new architectures requires to define the corresponding SIMD macros
|
|
//
|
|
// GGML_F32_STEP / GGML_F16_STEP
|
|
// number of elements to process in a single step
|
|
//
|
|
// GGML_F32_EPR / GGML_F16_EPR
|
|
// number of elements to fit in a single register
|
|
//
|
|
|
|
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
|
|
|
#define GGML_SIMD
|
|
|
|
// F32 NEON
|
|
|
|
#define GGML_F32_STEP 16
|
|
#define GGML_F32_EPR 4
|
|
|
|
#define GGML_F32x4 float32x4_t
|
|
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
|
|
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
|
|
#define GGML_F32x4_LOAD vld1q_f32
|
|
#define GGML_F32x4_STORE vst1q_f32
|
|
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
|
#define GGML_F32x4_ADD vaddq_f32
|
|
#define GGML_F32x4_MUL vmulq_f32
|
|
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
|
|
#define GGML_F32x4_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
|
|
x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
|
|
x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
|
|
x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
|
|
} \
|
|
res = GGML_F32x4_REDUCE_ONE(x[0]); \
|
|
}
|
|
|
|
#define GGML_F32_VEC GGML_F32x4
|
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
|
|
|
// F16 NEON
|
|
|
|
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
|
#define GGML_F16_STEP 32
|
|
#define GGML_F16_EPR 8
|
|
|
|
#define GGML_F16x8 float16x8_t
|
|
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
|
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
|
#define GGML_F16x8_LOAD vld1q_f16
|
|
#define GGML_F16x8_STORE vst1q_f16
|
|
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
|
#define GGML_F16x8_ADD vaddq_f16
|
|
#define GGML_F16x8_MUL vmulq_f16
|
|
#define GGML_F16x8_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
|
|
x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
|
|
x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
|
|
x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
|
|
} \
|
|
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
|
|
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
|
|
res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
|
}
|
|
|
|
#define GGML_F16_VEC GGML_F16x8
|
|
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
|
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
|
|
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
|
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
|
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
|
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
|
|
#else
|
|
// if FP16 vector arithmetic is not supported, we use FP32 instead
|
|
// and take advantage of the vcvt_ functions to convert to/from FP16
|
|
|
|
#define GGML_F16_STEP 16
|
|
#define GGML_F16_EPR 4
|
|
|
|
#define GGML_F32Cx4 float32x4_t
|
|
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
|
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
|
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
|
|
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
|
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
|
#define GGML_F32Cx4_ADD vaddq_f32
|
|
#define GGML_F32Cx4_MUL vmulq_f32
|
|
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
|
|
|
#define GGML_F16_VEC GGML_F32Cx4
|
|
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
|
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
|
|
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
|
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
|
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
|
#endif
|
|
|
|
#elif defined(__AVX__)
|
|
|
|
#define GGML_SIMD
|
|
|
|
// F32 AVX
|
|
|
|
#define GGML_F32_STEP 32
|
|
#define GGML_F32_EPR 8
|
|
|
|
#define GGML_F32x8 __m256
|
|
#define GGML_F32x8_ZERO _mm256_setzero_ps()
|
|
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
|
|
#define GGML_F32x8_LOAD _mm256_loadu_ps
|
|
#define GGML_F32x8_STORE _mm256_storeu_ps
|
|
#if defined(__FMA__)
|
|
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
|
|
#else
|
|
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
|
|
#endif
|
|
#define GGML_F32x8_ADD _mm256_add_ps
|
|
#define GGML_F32x8_MUL _mm256_mul_ps
|
|
#define GGML_F32x8_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
|
|
x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
|
|
x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
|
|
x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
|
|
} \
|
|
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
|
|
_mm256_extractf128_ps(x[0], 1)); \
|
|
const __m128 t1 = _mm_hadd_ps(t0, t0); \
|
|
res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
|
|
}
|
|
// TODO: is this optimal ?
|
|
|
|
#define GGML_F32_VEC GGML_F32x8
|
|
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
|
|
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
|
|
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
|
|
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
|
|
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
|
|
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
|
|
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
|
|
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
|
|
|
|
// F16 AVX
|
|
|
|
#define GGML_F16_STEP 32
|
|
#define GGML_F16_EPR 8
|
|
|
|
// F16 arithmetic is not supported by AVX, so we use F32 instead
|
|
|
|
#define GGML_F32Cx8 __m256
|
|
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
|
|
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
|
|
|
|
#if defined(__F16C__)
|
|
// the _mm256_cvt intrinsics require F16C
|
|
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
|
|
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
|
|
#else
|
|
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
|
|
float tmp[8];
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
|
}
|
|
|
|
return _mm256_loadu_ps(tmp);
|
|
}
|
|
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
|
|
float arr[8];
|
|
|
|
_mm256_storeu_ps(arr, y);
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
x[i] = GGML_FP32_TO_FP16(arr[i]);
|
|
}
|
|
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
|
|
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
|
|
#endif
|
|
|
|
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
|
|
#define GGML_F32Cx8_ADD _mm256_add_ps
|
|
#define GGML_F32Cx8_MUL _mm256_mul_ps
|
|
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
|
|
|
|
#define GGML_F16_VEC GGML_F32Cx8
|
|
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
|
|
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
|
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
|
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
|
|
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
|
|
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
|
|
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
|
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
|
|
|
|
#elif defined(__POWER9_VECTOR__)
|
|
|
|
#define GGML_SIMD
|
|
|
|
// F32 POWER9
|
|
|
|
#define GGML_F32_STEP 32
|
|
#define GGML_F32_EPR 4
|
|
|
|
#define GGML_F32x4 vector float
|
|
#define GGML_F32x4_ZERO 0.0f
|
|
#define GGML_F32x4_SET1 vec_splats
|
|
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
|
|
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
|
|
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
|
|
#define GGML_F32x4_ADD vec_add
|
|
#define GGML_F32x4_MUL vec_mul
|
|
#define GGML_F32x4_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
|
|
x[2*i] = vec_add(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
|
|
x[4*i] = vec_add(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
|
|
x[8*i] = vec_add(x[8*i], x[8*i+4]); \
|
|
} \
|
|
res = vec_extract(x[0], 0) + \
|
|
vec_extract(x[0], 1) + \
|
|
vec_extract(x[0], 2) + \
|
|
vec_extract(x[0], 3); \
|
|
}
|
|
|
|
#define GGML_F32_VEC GGML_F32x4
|
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
|
|
|
// F16 POWER9
|
|
#define GGML_F16_STEP GGML_F32_STEP
|
|
#define GGML_F16_EPR GGML_F32_EPR
|
|
#define GGML_F16_VEC GGML_F32x4
|
|
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
|
|
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
|
|
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
|
|
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
|
|
// Use vec_xl, not vec_ld, in case the load address is not aligned.
|
|
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
|
|
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
|
|
vec_extract_fp32_from_shortl(vec_xl(0, p))
|
|
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
|
|
#define GGML_F16_VEC_STORE(p, r, i) \
|
|
if (i & 0x1) \
|
|
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
|
|
r[i - GGML_ENDIAN_BYTE(0)]), \
|
|
0, p - GGML_F16_EPR)
|
|
|
|
#elif defined(__wasm_simd128__)
|
|
|
|
#define GGML_SIMD
|
|
|
|
// F32 WASM
|
|
|
|
#define GGML_F32_STEP 16
|
|
#define GGML_F32_EPR 4
|
|
|
|
#define GGML_F32x4 v128_t
|
|
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
|
|
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
|
|
#define GGML_F32x4_LOAD wasm_v128_load
|
|
#define GGML_F32x4_STORE wasm_v128_store
|
|
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
|
|
#define GGML_F32x4_ADD wasm_f32x4_add
|
|
#define GGML_F32x4_MUL wasm_f32x4_mul
|
|
#define GGML_F32x4_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
|
|
x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
|
|
x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
|
|
x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
|
|
} \
|
|
res = wasm_f32x4_extract_lane(x[0], 0) + \
|
|
wasm_f32x4_extract_lane(x[0], 1) + \
|
|
wasm_f32x4_extract_lane(x[0], 2) + \
|
|
wasm_f32x4_extract_lane(x[0], 3); \
|
|
}
|
|
|
|
#define GGML_F32_VEC GGML_F32x4
|
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
|
|
|
// F16 WASM
|
|
|
|
#define GGML_F16_STEP 16
|
|
#define GGML_F16_EPR 4
|
|
|
|
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
|
|
float tmp[4];
|
|
|
|
tmp[0] = GGML_FP16_TO_FP32(p[0]);
|
|
tmp[1] = GGML_FP16_TO_FP32(p[1]);
|
|
tmp[2] = GGML_FP16_TO_FP32(p[2]);
|
|
tmp[3] = GGML_FP16_TO_FP32(p[3]);
|
|
|
|
return wasm_v128_load(tmp);
|
|
}
|
|
|
|
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
|
|
float tmp[4];
|
|
|
|
wasm_v128_store(tmp, x);
|
|
|
|
p[0] = GGML_FP32_TO_FP16(tmp[0]);
|
|
p[1] = GGML_FP32_TO_FP16(tmp[1]);
|
|
p[2] = GGML_FP32_TO_FP16(tmp[2]);
|
|
p[3] = GGML_FP32_TO_FP16(tmp[3]);
|
|
}
|
|
|
|
#define GGML_F16x4 v128_t
|
|
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
|
|
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
|
|
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
|
|
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
|
|
#define GGML_F16x4_FMA GGML_F32x4_FMA
|
|
#define GGML_F16x4_ADD wasm_f32x4_add
|
|
#define GGML_F16x4_MUL wasm_f32x4_mul
|
|
#define GGML_F16x4_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
|
|
x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
|
|
x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
|
|
x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
|
|
} \
|
|
res = wasm_f32x4_extract_lane(x[0], 0) + \
|
|
wasm_f32x4_extract_lane(x[0], 1) + \
|
|
wasm_f32x4_extract_lane(x[0], 2) + \
|
|
wasm_f32x4_extract_lane(x[0], 3); \
|
|
}
|
|
|
|
#define GGML_F16_VEC GGML_F16x4
|
|
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
|
|
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
|
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
|
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
|
|
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
|
|
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
|
|
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
|
|
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
|
|
|
|
#elif defined(__SSE3__)
|
|
|
|
#define GGML_SIMD
|
|
|
|
// F32 SSE
|
|
|
|
#define GGML_F32_STEP 32
|
|
#define GGML_F32_EPR 4
|
|
|
|
#define GGML_F32x4 __m128
|
|
#define GGML_F32x4_ZERO _mm_setzero_ps()
|
|
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
|
|
#define GGML_F32x4_LOAD _mm_loadu_ps
|
|
#define GGML_F32x4_STORE _mm_storeu_ps
|
|
#if defined(__FMA__)
|
|
// TODO: Does this work?
|
|
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
|
|
#else
|
|
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
|
|
#endif
|
|
#define GGML_F32x4_ADD _mm_add_ps
|
|
#define GGML_F32x4_MUL _mm_mul_ps
|
|
#define GGML_F32x4_REDUCE(res, x) \
|
|
{ \
|
|
for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
|
|
x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
|
|
x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
|
|
} \
|
|
for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
|
|
x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
|
|
} \
|
|
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
|
|
res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
|
|
}
|
|
// TODO: is this optimal ?
|
|
|
|
#define GGML_F32_VEC GGML_F32x4
|
|
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
|
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
|
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
|
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
|
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
|
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
|
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
|
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
|
|
|
// F16 SSE
|
|
|
|
#define GGML_F16_STEP 32
|
|
#define GGML_F16_EPR 4
|
|
|
|
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
|
|
float tmp[4];
|
|
|
|
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
|
tmp[1] = GGML_FP16_TO_FP32(x[1]);
|
|
tmp[2] = GGML_FP16_TO_FP32(x[2]);
|
|
tmp[3] = GGML_FP16_TO_FP32(x[3]);
|
|
|
|
return _mm_loadu_ps(tmp);
|
|
}
|
|
|
|
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
|
|
float arr[4];
|
|
|
|
_mm_storeu_ps(arr, y);
|
|
|
|
x[0] = GGML_FP32_TO_FP16(arr[0]);
|
|
x[1] = GGML_FP32_TO_FP16(arr[1]);
|
|
x[2] = GGML_FP32_TO_FP16(arr[2]);
|
|
x[3] = GGML_FP32_TO_FP16(arr[3]);
|
|
}
|
|
|
|
#define GGML_F32Cx4 __m128
|
|
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
|
|
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
|
|
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
|
|
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
|
|
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
|
#define GGML_F32Cx4_ADD _mm_add_ps
|
|
#define GGML_F32Cx4_MUL _mm_mul_ps
|
|
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
|
|
|
#define GGML_F16_VEC GGML_F32Cx4
|
|
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
|
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
|
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
|
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
|
|
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
|
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
|
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
|
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
|
|
|
#endif
|
|
|
|
// GGML_F32_ARR / GGML_F16_ARR
|
|
// number of registers to use per step
|
|
#ifdef GGML_SIMD
|
|
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
|
|
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
|
|
#endif
|
|
|
|
//
|
|
// fundamental operations
|
|
//
|
|
|
|
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
|
|
|
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
|
|
|
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
|
|
|
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
|
|
|
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
|
|
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
|
|
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
|
|
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
|
|
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
|
|
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
|
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
|
|
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
|
|
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
|
|
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
|
|
|
|
inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
|
|
#ifdef GGML_SIMD
|
|
float sumf = 0.0f;
|
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
|
|
|
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
|
|
|
GGML_F32_VEC ax[GGML_F32_ARR];
|
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
|
|
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
|
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
|
|
|
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
|
}
|
|
}
|
|
|
|
// reduce sum0..sum3 to sum0
|
|
GGML_F32_VEC_REDUCE(sumf, sum);
|
|
|
|
// leftovers
|
|
for (int i = np; i < n; ++i) {
|
|
sumf += x[i]*y[i];
|
|
}
|
|
#else
|
|
// scalar
|
|
ggml_float sumf = 0.0;
|
|
for (int i = 0; i < n; ++i) {
|
|
sumf += (ggml_float)(x[i]*y[i]);
|
|
}
|
|
#endif
|
|
|
|
*s = sumf;
|
|
}
|
|
|
|
inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
|
|
ggml_float sumf = 0.0;
|
|
|
|
#if defined(GGML_SIMD)
|
|
const int np = (n & ~(GGML_F16_STEP - 1));
|
|
|
|
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
|
|
|
GGML_F16_VEC ax[GGML_F16_ARR];
|
|
GGML_F16_VEC ay[GGML_F16_ARR];
|
|
|
|
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
|
for (int j = 0; j < GGML_F16_ARR; j++) {
|
|
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
|
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
|
|
|
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
|
}
|
|
}
|
|
|
|
// reduce sum0..sum3 to sum0
|
|
GGML_F16_VEC_REDUCE(sumf, sum);
|
|
|
|
// leftovers
|
|
for (int i = np; i < n; ++i) {
|
|
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
|
|
}
|
|
#else
|
|
for (int i = 0; i < n; ++i) {
|
|
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
|
|
}
|
|
#endif
|
|
|
|
*s = sumf;
|
|
}
|
|
|
|
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
|
const int qk = QK8_0;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nb % 2 == 0);
|
|
|
|
const block_q4_0 * restrict x = vx;
|
|
const block_q8_0 * restrict y = vy;
|
|
|
|
#if defined(__ARM_NEON)
|
|
float32x4_t sumv0 = vdupq_n_f32(0.0f);
|
|
float32x4_t sumv1 = vdupq_n_f32(0.0f);
|
|
|
|
for (int i = 0; i < nb; i += 2) {
|
|
const block_q4_0 * restrict x0 = &x[i + 0];
|
|
const block_q4_0 * restrict x1 = &x[i + 1];
|
|
const block_q8_0 * restrict y0 = &y[i + 0];
|
|
const block_q8_0 * restrict y1 = &y[i + 1];
|
|
|
|
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
|
const int8x16_t s8b = vdupq_n_s8(0x8);
|
|
|
|
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
|
|
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
|
|
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
|
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
|
|
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
|
|
|
|
// sub 8
|
|
const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
|
|
const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
|
|
const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
|
|
const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
|
|
|
|
// load y
|
|
const int8x16_t v1_0l = vld1q_s8(y0->qs);
|
|
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
|
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
|
|
|
#if defined(__ARM_FEATURE_DOTPROD)
|
|
// dot product into int32x4_t
|
|
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
|
|
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
#else
|
|
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
|
|
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
|
|
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
|
|
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
|
|
|
|
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
|
|
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
|
|
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
|
|
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
|
|
|
|
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
#endif
|
|
}
|
|
|
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
|
#elif defined(__AVX2__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; ++i) {
|
|
/* Compute combined scale for the block */
|
|
const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
|
|
|
|
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
|
|
|
// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
|
|
const __m256i off = _mm256_set1_epi8( 8 );
|
|
bx = _mm256_sub_epi8( bx, off );
|
|
|
|
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
|
|
|
const __m256 q = mul_sum_i8_pairs_float(bx, by);
|
|
|
|
/* Multiply q with scale and accumulate */
|
|
acc = _mm256_fmadd_ps( d, q, acc );
|
|
}
|
|
|
|
*s = hsum_float_8(acc);
|
|
#elif defined(__AVX__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; ++i) {
|
|
// Compute combined scale for the block
|
|
const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
|
|
|
|
const __m128i lowMask = _mm_set1_epi8(0xF);
|
|
const __m128i off = _mm_set1_epi8(8);
|
|
|
|
const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
|
|
|
|
__m128i bx = _mm_and_si128(lowMask, tmp);
|
|
__m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
|
|
bx = _mm_sub_epi8(bx, off);
|
|
const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
|
|
|
|
bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
|
|
by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
|
|
bx = _mm_sub_epi8(bx, off);
|
|
const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
|
|
|
|
// Convert int32_t to float
|
|
__m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
|
|
|
|
// Apply the scale, and accumulate
|
|
acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
|
|
}
|
|
|
|
*s = hsum_float_8(acc);
|
|
#elif defined(__SSSE3__)
|
|
// set constants
|
|
const __m128i lowMask = _mm_set1_epi8(0xF);
|
|
const __m128i off = _mm_set1_epi8(8);
|
|
|
|
// Initialize accumulator with zeros
|
|
__m128 acc_0 = _mm_setzero_ps();
|
|
__m128 acc_1 = _mm_setzero_ps();
|
|
__m128 acc_2 = _mm_setzero_ps();
|
|
__m128 acc_3 = _mm_setzero_ps();
|
|
|
|
// First round without accumulation
|
|
{
|
|
_mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
|
|
_mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
|
|
|
|
// Compute combined scale for the block 0 and 1
|
|
const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
|
|
|
|
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
|
|
|
|
__m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
|
|
__m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
|
|
bx_0 = _mm_sub_epi8(bx_0, off);
|
|
const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
|
|
|
|
__m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
|
|
__m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
|
|
bx_1 = _mm_sub_epi8(bx_1, off);
|
|
const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
|
|
|
|
_mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
|
|
_mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
|
|
|
|
// Compute combined scale for the block 2 and 3
|
|
const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
|
|
|
|
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
|
|
|
|
__m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
|
|
__m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
|
|
bx_2 = _mm_sub_epi8(bx_2, off);
|
|
const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
|
|
|
|
__m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
|
|
__m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
|
|
bx_3 = _mm_sub_epi8(bx_3, off);
|
|
const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
|
|
|
|
// Convert int32_t to float
|
|
__m128 p0 = _mm_cvtepi32_ps(i32_0);
|
|
__m128 p1 = _mm_cvtepi32_ps(i32_1);
|
|
__m128 p2 = _mm_cvtepi32_ps(i32_2);
|
|
__m128 p3 = _mm_cvtepi32_ps(i32_3);
|
|
|
|
// Apply the scale
|
|
acc_0 = _mm_mul_ps( d_0_1, p0 );
|
|
acc_1 = _mm_mul_ps( d_0_1, p1 );
|
|
acc_2 = _mm_mul_ps( d_2_3, p2 );
|
|
acc_3 = _mm_mul_ps( d_2_3, p3 );
|
|
}
|
|
|
|
// Main loop
|
|
for (int i = 2; i < nb; i+=2) {
|
|
_mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
|
|
_mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
|
|
|
|
// Compute combined scale for the block 0 and 1
|
|
const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
|
|
|
|
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
|
|
|
|
__m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
|
|
__m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
|
|
bx_0 = _mm_sub_epi8(bx_0, off);
|
|
const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
|
|
|
|
__m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
|
|
__m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
|
|
bx_1 = _mm_sub_epi8(bx_1, off);
|
|
const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
|
|
|
|
_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
|
|
_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
|
|
|
|
// Compute combined scale for the block 2 and 3
|
|
const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
|
|
|
|
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
|
|
|
|
__m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
|
|
__m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
|
|
bx_2 = _mm_sub_epi8(bx_2, off);
|
|
const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
|
|
|
|
__m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
|
|
__m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
|
|
bx_3 = _mm_sub_epi8(bx_3, off);
|
|
const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
|
|
|
|
// Convert int32_t to float
|
|
__m128 p0 = _mm_cvtepi32_ps(i32_0);
|
|
__m128 p1 = _mm_cvtepi32_ps(i32_1);
|
|
__m128 p2 = _mm_cvtepi32_ps(i32_2);
|
|
__m128 p3 = _mm_cvtepi32_ps(i32_3);
|
|
|
|
// Apply the scale
|
|
__m128 p0_d = _mm_mul_ps( d_0_1, p0 );
|
|
__m128 p1_d = _mm_mul_ps( d_0_1, p1 );
|
|
__m128 p2_d = _mm_mul_ps( d_2_3, p2 );
|
|
__m128 p3_d = _mm_mul_ps( d_2_3, p3 );
|
|
|
|
// Acummulate
|
|
acc_0 = _mm_add_ps(p0_d, acc_0);
|
|
acc_1 = _mm_add_ps(p1_d, acc_1);
|
|
acc_2 = _mm_add_ps(p2_d, acc_2);
|
|
acc_3 = _mm_add_ps(p3_d, acc_3);
|
|
}
|
|
|
|
*s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
|
|
#else
|
|
// scalar
|
|
float sumf = 0.0;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
int sumi = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const int v0 = (x[i].qs[j] & 0x0F) - 8;
|
|
const int v1 = (x[i].qs[j] >> 4) - 8;
|
|
|
|
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
|
|
}
|
|
|
|
sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
|
|
}
|
|
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
|
const int qk = QK8_1;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nb % 2 == 0);
|
|
|
|
const block_q4_1 * restrict x = vx;
|
|
const block_q8_1 * restrict y = vy;
|
|
|
|
// TODO: add WASM SIMD
|
|
#if defined(__ARM_NEON)
|
|
float32x4_t sumv0 = vdupq_n_f32(0.0f);
|
|
float32x4_t sumv1 = vdupq_n_f32(0.0f);
|
|
|
|
float summs = 0;
|
|
|
|
for (int i = 0; i < nb; i += 2) {
|
|
const block_q4_1 * restrict x0 = &x[i + 0];
|
|
const block_q4_1 * restrict x1 = &x[i + 1];
|
|
const block_q8_1 * restrict y0 = &y[i + 0];
|
|
const block_q8_1 * restrict y1 = &y[i + 1];
|
|
|
|
summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
|
|
|
|
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
|
|
|
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
|
|
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
|
|
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
|
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
|
|
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
|
|
|
|
// load y
|
|
const int8x16_t v1_0l = vld1q_s8(y0->qs);
|
|
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
|
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
|
|
|
#if defined(__ARM_FEATURE_DOTPROD)
|
|
// dot product into int32x4_t
|
|
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
|
|
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
|
#else
|
|
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
|
|
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
|
|
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
|
|
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
|
|
|
|
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
|
|
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
|
|
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
|
|
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
|
|
|
|
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
|
#endif
|
|
}
|
|
|
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
|
|
#elif defined(__AVX2__) || defined(__AVX__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
|
|
float summs = 0;
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; ++i) {
|
|
const float d0 = GGML_FP16_TO_FP32(x[i].d);
|
|
const float d1 = y[i].d;
|
|
|
|
summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
|
|
|
|
const __m256 d0v = _mm256_set1_ps( d0 );
|
|
const __m256 d1v = _mm256_set1_ps( d1 );
|
|
|
|
// Compute combined scales
|
|
const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
|
|
|
|
// Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
|
|
const __m256i bx = bytes_from_nibbles_32(x[i].qs);
|
|
const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
|
|
|
|
const __m256 xy = mul_sum_us8_pairs_float(bx, by);
|
|
|
|
// Accumulate d0*d1*x*y
|
|
#if defined(__AVX2__)
|
|
acc = _mm256_fmadd_ps( d0d1, xy, acc );
|
|
#else
|
|
acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
|
|
#endif
|
|
}
|
|
|
|
*s = hsum_float_8(acc) + summs;
|
|
#else
|
|
// scalar
|
|
float sumf = 0.0;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
int sumi = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const int v0 = (x[i].qs[j] & 0x0F);
|
|
const int v1 = (x[i].qs[j] >> 4);
|
|
|
|
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
|
|
}
|
|
|
|
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
|
|
}
|
|
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
|
const int qk = QK8_0;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nb % 2 == 0);
|
|
assert(qk == QK5_0);
|
|
|
|
const block_q5_0 * restrict x = vx;
|
|
const block_q8_0 * restrict y = vy;
|
|
|
|
#if defined(__ARM_NEON)
|
|
float32x4_t sumv0 = vdupq_n_f32(0.0f);
|
|
float32x4_t sumv1 = vdupq_n_f32(0.0f);
|
|
|
|
uint32_t qh0;
|
|
uint32_t qh1;
|
|
|
|
uint64_t tmp0[4];
|
|
uint64_t tmp1[4];
|
|
|
|
for (int i = 0; i < nb; i += 2) {
|
|
const block_q5_0 * restrict x0 = &x[i];
|
|
const block_q5_0 * restrict x1 = &x[i + 1];
|
|
const block_q8_0 * restrict y0 = &y[i];
|
|
const block_q8_0 * restrict y1 = &y[i + 1];
|
|
|
|
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
|
|
|
// extract the 5th bit via lookup table ((!b) << 4)
|
|
memcpy(&qh0, x0->qh, sizeof(qh0));
|
|
memcpy(&qh1, x1->qh, sizeof(qh1));
|
|
|
|
tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
|
|
tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
|
|
tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
|
|
tmp0[3] = table_b2b_1[(qh0 >> 24) ];
|
|
|
|
tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
|
|
tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
|
|
tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
|
|
tmp1[3] = table_b2b_1[(qh1 >> 24) ];
|
|
|
|
const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
|
|
const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
|
|
const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
|
|
const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
|
|
|
|
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
|
|
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
|
|
int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
|
int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
|
|
int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
|
|
|
|
// add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
|
|
const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
|
|
const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
|
|
const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
|
|
const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
|
|
|
|
// load y
|
|
const int8x16_t v1_0l = vld1q_s8(y0->qs);
|
|
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
|
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
|
|
|
#if defined(__ARM_FEATURE_DOTPROD)
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
|
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
|
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
|
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
|
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
#else
|
|
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
|
|
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
|
|
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
|
|
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
|
|
|
|
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
|
|
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
|
|
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
|
|
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
|
|
|
|
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
#endif
|
|
}
|
|
|
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
|
#elif defined(__wasm_simd128__)
|
|
v128_t sumv = wasm_f32x4_splat(0.0f);
|
|
|
|
uint32_t qh;
|
|
uint64_t tmp[4];
|
|
|
|
// TODO: check if unrolling this is better
|
|
for (int i = 0; i < nb; ++i) {
|
|
const block_q5_0 * restrict x0 = &x[i];
|
|
const block_q8_0 * restrict y0 = &y[i];
|
|
|
|
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
|
|
|
// extract the 5th bit
|
|
memcpy(&qh, x0->qh, sizeof(qh));
|
|
|
|
tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
|
|
tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
|
|
tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
|
|
tmp[3] = table_b2b_1[(qh >> 24) ];
|
|
|
|
const v128_t qhl = wasm_v128_load(tmp + 0);
|
|
const v128_t qhh = wasm_v128_load(tmp + 2);
|
|
|
|
const v128_t v0 = wasm_v128_load(x0->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const v128_t v0l = wasm_v128_and (v0, m4b);
|
|
const v128_t v0h = wasm_u8x16_shr(v0, 4);
|
|
|
|
// add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
|
|
const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
|
|
const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
|
|
|
|
// load y
|
|
const v128_t v1l = wasm_v128_load(y0->qs);
|
|
const v128_t v1h = wasm_v128_load(y0->qs + 16);
|
|
|
|
// int8x16 -> int16x8
|
|
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
|
|
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
|
|
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
|
|
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
|
|
|
|
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
|
|
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
|
|
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
|
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
|
|
|
// dot product
|
|
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
|
|
wasm_i32x4_add(
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
|
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
|
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
|
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
|
|
}
|
|
|
|
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
|
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
|
#elif defined(__AVX2__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; i++) {
|
|
/* Compute combined scale for the block */
|
|
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
|
|
|
|
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
|
__m256i bxhi = bytes_from_bits_32(x[i].qh);
|
|
bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
|
|
bx = _mm256_or_si256(bx, bxhi);
|
|
|
|
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
|
|
|
const __m256 q = mul_sum_i8_pairs_float(bx, by);
|
|
|
|
/* Multiply q with scale and accumulate */
|
|
acc = _mm256_fmadd_ps(d, q, acc);
|
|
}
|
|
|
|
*s = hsum_float_8(acc);
|
|
#elif defined(__AVX__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
__m128i mask = _mm_set1_epi8((char)0xF0);
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; i++) {
|
|
/* Compute combined scale for the block */
|
|
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
|
|
|
|
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
|
const __m256i bxhi = bytes_from_bits_32(x[i].qh);
|
|
__m128i bxhil = _mm256_castsi256_si128(bxhi);
|
|
__m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
|
|
bxhil = _mm_andnot_si128(bxhil, mask);
|
|
bxhih = _mm_andnot_si128(bxhih, mask);
|
|
__m128i bxl = _mm256_castsi256_si128(bx);
|
|
__m128i bxh = _mm256_extractf128_si256(bx, 1);
|
|
bxl = _mm_or_si128(bxl, bxhil);
|
|
bxh = _mm_or_si128(bxh, bxhih);
|
|
bx = MM256_SET_M128I(bxh, bxl);
|
|
|
|
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
|
|
|
const __m256 q = mul_sum_i8_pairs_float(bx, by);
|
|
|
|
/* Multiply q with scale and accumulate */
|
|
acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
|
|
}
|
|
|
|
*s = hsum_float_8(acc);
|
|
#else
|
|
// scalar
|
|
float sumf = 0.0;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
uint32_t qh;
|
|
memcpy(&qh, x[i].qh, sizeof(qh));
|
|
|
|
int sumi = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
|
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
|
|
|
const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
|
|
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
|
|
|
|
sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
|
|
}
|
|
|
|
sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
|
|
}
|
|
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
|
const int qk = QK8_1;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nb % 2 == 0);
|
|
assert(qk == QK5_1);
|
|
|
|
const block_q5_1 * restrict x = vx;
|
|
const block_q8_1 * restrict y = vy;
|
|
|
|
#if defined(__ARM_NEON)
|
|
float32x4_t sumv0 = vdupq_n_f32(0.0f);
|
|
float32x4_t sumv1 = vdupq_n_f32(0.0f);
|
|
|
|
float summs0 = 0.0f;
|
|
float summs1 = 0.0f;
|
|
|
|
uint32_t qh0;
|
|
uint32_t qh1;
|
|
|
|
uint64_t tmp0[4];
|
|
uint64_t tmp1[4];
|
|
|
|
for (int i = 0; i < nb; i += 2) {
|
|
const block_q5_1 * restrict x0 = &x[i];
|
|
const block_q5_1 * restrict x1 = &x[i + 1];
|
|
const block_q8_1 * restrict y0 = &y[i];
|
|
const block_q8_1 * restrict y1 = &y[i + 1];
|
|
|
|
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
|
|
|
summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
|
|
summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
|
|
|
|
// extract the 5th bit via lookup table ((b) << 4)
|
|
memcpy(&qh0, x0->qh, sizeof(qh0));
|
|
memcpy(&qh1, x1->qh, sizeof(qh1));
|
|
|
|
tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
|
|
tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
|
|
tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
|
|
tmp0[3] = table_b2b_0[(qh0 >> 24) ];
|
|
|
|
tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
|
|
tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
|
|
tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
|
|
tmp1[3] = table_b2b_0[(qh1 >> 24) ];
|
|
|
|
const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
|
|
const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
|
|
const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
|
|
const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
|
|
|
|
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
|
|
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
|
|
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
|
|
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
|
|
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
|
|
|
|
// add high bit
|
|
const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
|
|
const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
|
|
const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
|
|
const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
|
|
|
|
// load y
|
|
const int8x16_t v1_0l = vld1q_s8(y0->qs);
|
|
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
|
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
|
|
|
#if defined(__ARM_FEATURE_DOTPROD)
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
|
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
|
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
|
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
|
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
|
#else
|
|
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
|
|
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
|
|
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
|
|
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
|
|
|
|
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
|
|
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
|
|
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
|
|
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
|
|
|
|
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
|
#endif
|
|
}
|
|
|
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
|
|
#elif defined(__wasm_simd128__)
|
|
v128_t sumv = wasm_f32x4_splat(0.0f);
|
|
|
|
float summs = 0.0f;
|
|
|
|
uint32_t qh;
|
|
uint64_t tmp[4];
|
|
|
|
// TODO: check if unrolling this is better
|
|
for (int i = 0; i < nb; ++i) {
|
|
const block_q5_1 * restrict x0 = &x[i];
|
|
const block_q8_1 * restrict y0 = &y[i];
|
|
|
|
summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
|
|
|
|
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
|
|
|
// extract the 5th bit
|
|
memcpy(&qh, x0->qh, sizeof(qh));
|
|
|
|
tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
|
|
tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
|
|
tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
|
|
tmp[3] = table_b2b_0[(qh >> 24) ];
|
|
|
|
const v128_t qhl = wasm_v128_load(tmp + 0);
|
|
const v128_t qhh = wasm_v128_load(tmp + 2);
|
|
|
|
const v128_t v0 = wasm_v128_load(x0->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const v128_t v0l = wasm_v128_and (v0, m4b);
|
|
const v128_t v0h = wasm_u8x16_shr(v0, 4);
|
|
|
|
// add high bit
|
|
const v128_t v0lf = wasm_v128_or(v0l, qhl);
|
|
const v128_t v0hf = wasm_v128_or(v0h, qhh);
|
|
|
|
// load y
|
|
const v128_t v1l = wasm_v128_load(y0->qs);
|
|
const v128_t v1h = wasm_v128_load(y0->qs + 16);
|
|
|
|
// int8x16 -> int16x8
|
|
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
|
|
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
|
|
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
|
|
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
|
|
|
|
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
|
|
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
|
|
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
|
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
|
|
|
// dot product
|
|
sumv = wasm_f32x4_add(sumv,
|
|
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
|
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
|
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
|
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
|
|
}
|
|
|
|
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
|
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
|
|
#elif defined(__AVX2__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
|
|
float summs = 0.0f;
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; i++) {
|
|
const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
|
|
|
|
summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
|
|
|
|
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
|
__m256i bxhi = bytes_from_bits_32(x[i].qh);
|
|
bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
|
|
bx = _mm256_or_si256(bx, bxhi);
|
|
|
|
const __m256 dy = _mm256_set1_ps(y[i].d);
|
|
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
|
|
|
const __m256 q = mul_sum_us8_pairs_float(bx, by);
|
|
|
|
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
|
|
}
|
|
|
|
*s = hsum_float_8(acc) + summs;
|
|
#elif defined(__AVX__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
__m128i mask = _mm_set1_epi8(0x10);
|
|
|
|
float summs = 0.0f;
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; i++) {
|
|
const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
|
|
|
|
summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
|
|
|
|
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
|
const __m256i bxhi = bytes_from_bits_32(x[i].qh);
|
|
__m128i bxhil = _mm256_castsi256_si128(bxhi);
|
|
__m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
|
|
bxhil = _mm_and_si128(bxhil, mask);
|
|
bxhih = _mm_and_si128(bxhih, mask);
|
|
__m128i bxl = _mm256_castsi256_si128(bx);
|
|
__m128i bxh = _mm256_extractf128_si256(bx, 1);
|
|
bxl = _mm_or_si128(bxl, bxhil);
|
|
bxh = _mm_or_si128(bxh, bxhih);
|
|
bx = MM256_SET_M128I(bxh, bxl);
|
|
|
|
const __m256 dy = _mm256_set1_ps(y[i].d);
|
|
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
|
|
|
const __m256 q = mul_sum_us8_pairs_float(bx, by);
|
|
|
|
acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
|
|
}
|
|
|
|
*s = hsum_float_8(acc) + summs;
|
|
#else
|
|
// scalar
|
|
float sumf = 0.0;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
uint32_t qh;
|
|
memcpy(&qh, x[i].qh, sizeof(qh));
|
|
|
|
int sumi = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
|
|
const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
|
|
|
|
sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
|
|
}
|
|
|
|
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
|
|
}
|
|
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
|
const int qk = QK8_0;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nb % 2 == 0);
|
|
|
|
const block_q8_0 * restrict x = vx;
|
|
const block_q8_0 * restrict y = vy;
|
|
|
|
#if defined(__ARM_NEON)
|
|
float32x4_t sumv0 = vdupq_n_f32(0.0f);
|
|
float32x4_t sumv1 = vdupq_n_f32(0.0f);
|
|
|
|
for (int i = 0; i < nb; i += 2) {
|
|
const block_q8_0 * restrict x0 = &x[i + 0];
|
|
const block_q8_0 * restrict x1 = &x[i + 1];
|
|
const block_q8_0 * restrict y0 = &y[i + 0];
|
|
const block_q8_0 * restrict y1 = &y[i + 1];
|
|
|
|
const int8x16_t x0_0 = vld1q_s8(x0->qs);
|
|
const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
|
|
const int8x16_t x1_0 = vld1q_s8(x1->qs);
|
|
const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
|
|
|
|
// load y
|
|
const int8x16_t y0_0 = vld1q_s8(y0->qs);
|
|
const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
|
|
const int8x16_t y1_0 = vld1q_s8(y1->qs);
|
|
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
|
|
|
|
#if defined(__ARM_FEATURE_DOTPROD)
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
|
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
|
|
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
|
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
|
|
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
|
|
#else
|
|
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
|
|
const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
|
|
const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
|
|
const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
|
|
|
const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
|
|
const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
|
|
const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
|
|
const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
|
|
|
|
const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
|
const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
|
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
|
|
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
|
|
|
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
#endif
|
|
}
|
|
|
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
|
#elif defined(__AVX2__) || defined(__AVX__)
|
|
// Initialize accumulator with zeros
|
|
__m256 acc = _mm256_setzero_ps();
|
|
|
|
// Main loop
|
|
for (int i = 0; i < nb; ++i) {
|
|
// Compute combined scale for the block
|
|
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
|
|
__m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
|
|
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
|
|
|
const __m256 q = mul_sum_i8_pairs_float(bx, by);
|
|
|
|
// Multiply q with scale and accumulate
|
|
#if defined(__AVX2__)
|
|
acc = _mm256_fmadd_ps( d, q, acc );
|
|
#else
|
|
acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
|
|
#endif
|
|
}
|
|
|
|
*s = hsum_float_8(acc);
|
|
#else
|
|
// scalar
|
|
float sumf = 0.0;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
int sumi = 0;
|
|
|
|
for (int j = 0; j < qk; j++) {
|
|
sumi += x[i].qs[j]*y[i].qs[j];
|
|
}
|
|
|
|
sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
|
|
}
|
|
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
// compute GGML_VEC_DOT_UNROLL dot products at once
|
|
// xs - x row stride in bytes
|
|
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
|
|
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
|
|
|
|
ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
|
|
|
|
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
|
|
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
|
|
}
|
|
|
|
#if defined(GGML_SIMD)
|
|
const int np = (n & ~(GGML_F16_STEP - 1));
|
|
|
|
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
|
|
|
GGML_F16_VEC ax[GGML_F16_ARR];
|
|
GGML_F16_VEC ay[GGML_F16_ARR];
|
|
|
|
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
|
for (int j = 0; j < GGML_F16_ARR; j++) {
|
|
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
|
|
|
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
|
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
|
|
|
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// reduce sum0..sum3 to sum0
|
|
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
|
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
|
}
|
|
|
|
// leftovers
|
|
for (int i = np; i < n; ++i) {
|
|
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
|
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
|
}
|
|
}
|
|
#else
|
|
for (int i = 0; i < n; ++i) {
|
|
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
|
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
|
|
s[i] = sumf[i];
|
|
}
|
|
}
|
|
|
|
inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
|
|
#if defined(GGML_SIMD)
|
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
|
|
|
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
|
|
|
GGML_F32_VEC ax[GGML_F32_ARR];
|
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
|
|
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
|
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
|
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
|
|
|
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
|
}
|
|
}
|
|
|
|
// leftovers
|
|
for (int i = np; i < n; ++i) {
|
|
y[i] += x[i]*v;
|
|
}
|
|
#else
|
|
// scalar
|
|
for (int i = 0; i < n; ++i) {
|
|
y[i] += x[i]*v;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
|
|
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
|
#if defined(GGML_SIMD)
|
|
const int np = (n & ~(GGML_F32_STEP - 1));
|
|
|
|
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
|
|
|
GGML_F32_VEC ay[GGML_F32_ARR];
|
|
|
|
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
|
for (int j = 0; j < GGML_F32_ARR; j++) {
|
|
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
|
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
|
|
|
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
|
}
|
|
}
|
|
|
|
// leftovers
|
|
for (int i = np; i < n; ++i) {
|
|
y[i] *= v;
|
|
}
|
|
#else
|
|
// scalar
|
|
for (int i = 0; i < n; ++i) {
|
|
y[i] *= v;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
|
|
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
|
|
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
|
|
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
|
|
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
|
|
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
|
|
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
|
|
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
|
|
|
static const float GELU_COEF_A = 0.044715f;
|
|
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
|
|
|
inline static float ggml_gelu_f32(float x) {
|
|
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
|
}
|
|
|
|
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
|
const uint16_t * i16 = (const uint16_t *) x;
|
|
for (int i = 0; i < n; ++i) {
|
|
y[i] = table_gelu_f16[i16[i]];
|
|
}
|
|
}
|
|
|
|
#ifdef GGML_GELU_FP16
|
|
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
|
uint16_t t;
|
|
for (int i = 0; i < n; ++i) {
|
|
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
|
memcpy(&t, &fp16, sizeof(uint16_t));
|
|
y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
|
|
}
|
|
}
|
|
#else
|
|
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
|
for (int i = 0; i < n; ++i) {
|
|
y[i] = ggml_gelu_f32(x[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Sigmoid Linear Unit (SiLU) function
|
|
inline static float ggml_silu_f32(float x) {
|
|
return x/(1.0f + expf(-x));
|
|
}
|
|
|
|
//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
|
// const uint16_t * i16 = (const uint16_t *) x;
|
|
// for (int i = 0; i < n; ++i) {
|
|
// y[i] = table_silu_f16[i16[i]];
|
|
// }
|
|
//}
|
|
|
|
#ifdef GGML_SILU_FP16
|
|
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
|
uint16_t t;
|
|
for (int i = 0; i < n; ++i) {
|
|
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
|
memcpy(&t, &fp16, sizeof(uint16_t));
|
|
y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
|
|
}
|
|
}
|
|
#else
|
|
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
|
for (int i = 0; i < n; ++i) {
|
|
y[i] = ggml_silu_f32(x[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
inline static float ggml_silu_backward_f32(float x, float dy) {
|
|
const float s = 1.0f/(1.0f + expf(-x));
|
|
return dy*s*(1.0f + x*(1.0f - s));
|
|
}
|
|
|
|
#ifdef GGML_SILU_FP16
|
|
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
|
for (int i = 0; i < n; ++i) {
|
|
// we did not use x[i] to compute forward silu but its f16 equivalent
|
|
// take derivative at f16 of x[i]:
|
|
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
|
float usedx = GGML_FP16_TO_FP32(fp16);
|
|
dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
|
|
}
|
|
}
|
|
#else
|
|
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
|
for (int i = 0; i < n; ++i) {
|
|
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
|
|
#ifndef GGML_USE_ACCELERATE
|
|
ggml_float sum = 0.0;
|
|
for (int i = 0; i < n; ++i) {
|
|
sum += (ggml_float)x[i];
|
|
}
|
|
*s = sum;
|
|
#else
|
|
vDSP_sve(x, 1, s, n);
|
|
#endif
|
|
}
|
|
|
|
inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
|
|
ggml_float sum = 0.0;
|
|
for (int i = 0; i < n; ++i) {
|
|
sum += (ggml_float)x[i];
|
|
}
|
|
*s = sum;
|
|
}
|
|
|
|
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
|
|
#ifndef GGML_USE_ACCELERATE
|
|
float max = -INFINITY;
|
|
for (int i = 0; i < n; ++i) {
|
|
max = MAX(max, x[i]);
|
|
}
|
|
*s = max;
|
|
#else
|
|
vDSP_maxv(x, 1, s, n);
|
|
#endif
|
|
}
|
|
|
|
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
|
|
ggml_vec_norm_f32(n, s, x);
|
|
*s = 1.f/(*s);
|
|
}
|
|
|
|
//
|
|
// logging
|
|
//
|
|
|
|
#if (GGML_DEBUG >= 1)
|
|
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG(...)
|
|
#endif
|
|
|
|
#if (GGML_DEBUG >= 5)
|
|
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG_5(...)
|
|
#endif
|
|
|
|
#if (GGML_DEBUG >= 10)
|
|
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG_10(...)
|
|
#endif
|
|
|
|
#define GGML_PRINT(...) printf(__VA_ARGS__)
|
|
|
|
//
|
|
// data types
|
|
//
|
|
|
|
static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
|
|
[GGML_TYPE_F32] = 1,
|
|
[GGML_TYPE_F16] = 1,
|
|
[GGML_TYPE_Q4_0] = QK4_0,
|
|
[GGML_TYPE_Q4_1] = QK4_1,
|
|
[GGML_TYPE_Q5_0] = QK5_0,
|
|
[GGML_TYPE_Q5_1] = QK5_1,
|
|
[GGML_TYPE_Q8_0] = QK8_0,
|
|
[GGML_TYPE_Q8_1] = QK8_1,
|
|
#ifdef GGML_USE_K_QUANTS
|
|
[GGML_TYPE_Q2_K] = QK_K,
|
|
[GGML_TYPE_Q3_K] = QK_K,
|
|
[GGML_TYPE_Q4_K] = QK_K,
|
|
[GGML_TYPE_Q5_K] = QK_K,
|
|
[GGML_TYPE_Q6_K] = QK_K,
|
|
[GGML_TYPE_Q8_K] = QK_K,
|
|
#endif
|
|
[GGML_TYPE_I8] = 1,
|
|
[GGML_TYPE_I16] = 1,
|
|
[GGML_TYPE_I32] = 1,
|
|
};
|
|
static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
|
|
|
|
static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
|
|
[GGML_TYPE_F32] = sizeof(float),
|
|
[GGML_TYPE_F16] = sizeof(ggml_fp16_t),
|
|
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
|
|
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
|
|
[GGML_TYPE_Q5_0] = sizeof(block_q5_0),
|
|
[GGML_TYPE_Q5_1] = sizeof(block_q5_1),
|
|
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
|
|
[GGML_TYPE_Q8_1] = sizeof(block_q8_1),
|
|
#ifdef GGML_USE_K_QUANTS
|
|
[GGML_TYPE_Q2_K] = sizeof(block_q2_K),
|
|
[GGML_TYPE_Q3_K] = sizeof(block_q3_K),
|
|
[GGML_TYPE_Q4_K] = sizeof(block_q4_K),
|
|
[GGML_TYPE_Q5_K] = sizeof(block_q5_K),
|
|
[GGML_TYPE_Q6_K] = sizeof(block_q6_K),
|
|
[GGML_TYPE_Q8_K] = sizeof(block_q8_K),
|
|
#endif
|
|
[GGML_TYPE_I8] = sizeof(int8_t),
|
|
[GGML_TYPE_I16] = sizeof(int16_t),
|
|
[GGML_TYPE_I32] = sizeof(int32_t),
|
|
};
|
|
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
|
|
|
|
|
|
static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
|
|
[GGML_TYPE_F32] = "f32",
|
|
[GGML_TYPE_F16] = "f16",
|
|
[GGML_TYPE_Q4_0] = "q4_0",
|
|
[GGML_TYPE_Q4_1] = "q4_1",
|
|
[GGML_TYPE_Q5_0] = "q5_0",
|
|
[GGML_TYPE_Q5_1] = "q5_1",
|
|
[GGML_TYPE_Q8_0] = "q8_0",
|
|
[GGML_TYPE_Q8_1] = "q8_1",
|
|
[GGML_TYPE_Q2_K] = "q2_K",
|
|
[GGML_TYPE_Q3_K] = "q3_K",
|
|
[GGML_TYPE_Q4_K] = "q4_K",
|
|
[GGML_TYPE_Q5_K] = "q5_K",
|
|
[GGML_TYPE_Q6_K] = "q6_K",
|
|
[GGML_TYPE_Q8_K] = "q8_K",
|
|
[GGML_TYPE_I8] = "i8",
|
|
[GGML_TYPE_I16] = "i16",
|
|
[GGML_TYPE_I32] = "i32",
|
|
};
|
|
static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
|
|
|
|
static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
|
|
[GGML_TYPE_F32] = false,
|
|
[GGML_TYPE_F16] = false,
|
|
[GGML_TYPE_Q4_0] = true,
|
|
[GGML_TYPE_Q4_1] = true,
|
|
[GGML_TYPE_Q5_0] = true,
|
|
[GGML_TYPE_Q5_1] = true,
|
|
[GGML_TYPE_Q8_0] = true,
|
|
[GGML_TYPE_Q8_1] = true,
|
|
[GGML_TYPE_Q2_K] = true,
|
|
[GGML_TYPE_Q3_K] = true,
|
|
[GGML_TYPE_Q4_K] = true,
|
|
[GGML_TYPE_Q5_K] = true,
|
|
[GGML_TYPE_Q6_K] = true,
|
|
[GGML_TYPE_Q8_K] = true,
|
|
[GGML_TYPE_I8] = false,
|
|
[GGML_TYPE_I16] = false,
|
|
[GGML_TYPE_I32] = false,
|
|
};
|
|
static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
|
|
|
|
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
|
"NONE",
|
|
|
|
"DUP",
|
|
"ADD",
|
|
"ADD1",
|
|
"ACC",
|
|
"SUB",
|
|
"MUL",
|
|
"DIV",
|
|
"SQR",
|
|
"SQRT",
|
|
"LOG",
|
|
"SUM",
|
|
"SUM_ROWS",
|
|
"MEAN",
|
|
"REPEAT",
|
|
"REPEAT_BACK",
|
|
"ABS",
|
|
"SGN",
|
|
"NEG",
|
|
"STEP",
|
|
"RELU",
|
|
"GELU",
|
|
"SILU",
|
|
"SILU_BACK",
|
|
"NORM",
|
|
"RMS_NORM",
|
|
"RMS_NORM_BACK",
|
|
|
|
"MUL_MAT",
|
|
"OUT_PROD",
|
|
|
|
"SCALE",
|
|
"SET",
|
|
"CPY",
|
|
"CONT",
|
|
"RESHAPE",
|
|
"VIEW",
|
|
"PERMUTE",
|
|
"TRANSPOSE",
|
|
"GET_ROWS",
|
|
"GET_ROWS_BACK",
|
|
"DIAG",
|
|
"DIAG_MASK_INF",
|
|
"DIAG_MASK_ZERO",
|
|
"SOFT_MAX",
|
|
"SOFT_MAX_BACK",
|
|
"ROPE",
|
|
"ROPE_BACK",
|
|
"ALIBI",
|
|
"CLAMP",
|
|
"CONV_1D_1S",
|
|
"CONV_1D_2S",
|
|
|
|
"FLASH_ATTN",
|
|
"FLASH_FF",
|
|
"FLASH_ATTN_BACK",
|
|
|
|
"MAP_UNARY",
|
|
"MAP_BINARY",
|
|
|
|
"CROSS_ENTROPY_LOSS",
|
|
"CROSS_ENTROPY_LOSS_BACK",
|
|
};
|
|
|
|
static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
|
|
|
|
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|
"none",
|
|
|
|
"x",
|
|
"x+y",
|
|
"x+y",
|
|
"view(x,nb,offset)+=y->x",
|
|
"x-y",
|
|
"x*y",
|
|
"x/y",
|
|
"x^2",
|
|
"√x",
|
|
"log(x)",
|
|
"Σx",
|
|
"Σx_k",
|
|
"Σx/n",
|
|
"repeat(x)",
|
|
"repeat_back(x)",
|
|
"abs(x)",
|
|
"sgn(x)",
|
|
"-x",
|
|
"step(x)",
|
|
"relu(x)",
|
|
"gelu(x)",
|
|
"silu(x)",
|
|
"silu_back(x)",
|
|
"norm(x)",
|
|
"rms_norm(x)",
|
|
"rms_norm_back(x)",
|
|
|
|
"X*Y",
|
|
"X*Y",
|
|
|
|
"x*v",
|
|
"y-\\>view(x)",
|
|
"x-\\>y",
|
|
"cont(x)",
|
|
"reshape(x)",
|
|
"view(x)",
|
|
"permute(x)",
|
|
"transpose(x)",
|
|
"get_rows(x)",
|
|
"get_rows_back(x)",
|
|
"diag(x)",
|
|
"diag_mask_inf(x)",
|
|
"diag_mask_zero(x)",
|
|
"soft_max(x)",
|
|
"soft_max_back(x)",
|
|
"rope(x)",
|
|
"rope_back(x)",
|
|
"alibi(x)",
|
|
"clamp(x)",
|
|
"conv_1d_1s(x)",
|
|
"conv_1d_2s(x)",
|
|
|
|
"flash_attn(x)",
|
|
"flash_ff(x)",
|
|
"flash_attn_back(x)",
|
|
|
|
"f(x)",
|
|
"f(x,y)",
|
|
|
|
"cross_entropy_loss(x,y)",
|
|
"cross_entropy_loss_back(x,y)",
|
|
};
|
|
|
|
static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
|
|
|
|
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
|
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
|
|
|
//
|
|
// ggml context
|
|
//
|
|
|
|
struct ggml_context {
|
|
size_t mem_size;
|
|
void * mem_buffer;
|
|
bool mem_buffer_owned;
|
|
bool no_alloc;
|
|
bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
|
|
|
|
int n_objects;
|
|
|
|
struct ggml_object * objects_begin;
|
|
struct ggml_object * objects_end;
|
|
|
|
struct ggml_scratch scratch;
|
|
struct ggml_scratch scratch_save;
|
|
};
|
|
|
|
struct ggml_context_container {
|
|
bool used;
|
|
|
|
struct ggml_context context;
|
|
};
|
|
|
|
//
|
|
// ggml state
|
|
//
|
|
|
|
struct ggml_state {
|
|
struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
|
|
};
|
|
|
|
// global state
|
|
static struct ggml_state g_state;
|
|
static atomic_int g_state_barrier = 0;
|
|
|
|
// barrier via spin lock
|
|
inline static void ggml_critical_section_start(void) {
|
|
int processing = atomic_fetch_add(&g_state_barrier, 1);
|
|
|
|
while (processing > 0) {
|
|
// wait for other threads to finish
|
|
atomic_fetch_sub(&g_state_barrier, 1);
|
|
sched_yield(); // TODO: reconsider this
|
|
processing = atomic_fetch_add(&g_state_barrier, 1);
|
|
}
|
|
}
|
|
|
|
// TODO: make this somehow automatically executed
|
|
// some sort of "sentry" mechanism
|
|
inline static void ggml_critical_section_end(void) {
|
|
atomic_fetch_sub(&g_state_barrier, 1);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ggml_print_object(const struct ggml_object * obj) {
|
|
GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
|
|
obj->offs, obj->size, (const void *) obj->next);
|
|
}
|
|
|
|
void ggml_print_objects(const struct ggml_context * ctx) {
|
|
struct ggml_object * obj = ctx->objects_begin;
|
|
|
|
GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
|
|
|
|
while (obj != NULL) {
|
|
ggml_print_object(obj);
|
|
obj = obj->next;
|
|
}
|
|
|
|
GGML_PRINT("%s: --- end ---\n", __func__);
|
|
}
|
|
|
|
int64_t ggml_nelements(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
|
|
}
|
|
|
|
int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
|
|
}
|
|
|
|
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
// this should handle cases where the tensor is not contiguous in memory
|
|
// probaby just:
|
|
//
|
|
// return tensor->ne[3]*tensor->nb[3]
|
|
//
|
|
// is enough, but just in case, adding the second part
|
|
|
|
return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
|
|
}
|
|
|
|
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
|
|
}
|
|
|
|
int ggml_blck_size(enum ggml_type type) {
|
|
return GGML_BLCK_SIZE[type];
|
|
}
|
|
|
|
size_t ggml_type_size(enum ggml_type type) {
|
|
return GGML_TYPE_SIZE[type];
|
|
}
|
|
|
|
float ggml_type_sizef(enum ggml_type type) {
|
|
return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
|
|
}
|
|
|
|
const char * ggml_type_name(enum ggml_type type) {
|
|
return GGML_TYPE_NAME[type];
|
|
}
|
|
|
|
const char * ggml_op_name(enum ggml_op op) {
|
|
return GGML_OP_NAME[op];
|
|
}
|
|
|
|
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
|
return GGML_TYPE_SIZE[tensor->type];
|
|
}
|
|
|
|
static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
|
}
|
|
|
|
static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
|
}
|
|
|
|
static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
|
}
|
|
|
|
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
(t0->ne[0] == t1->ne[0]) &&
|
|
(t0->ne[2] == t1->ne[2]) &&
|
|
(t0->ne[3] == t1->ne[3]);
|
|
}
|
|
|
|
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
(t0->ne[1] == t1->ne[1]) &&
|
|
(t0->ne[2] == t1->ne[2]) &&
|
|
(t0->ne[3] == t1->ne[3]);
|
|
}
|
|
|
|
bool ggml_is_quantized(enum ggml_type type) {
|
|
return GGML_IS_QUANTIZED[type];
|
|
}
|
|
|
|
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
|
enum ggml_type wtype = GGML_TYPE_COUNT;
|
|
|
|
switch (ftype) {
|
|
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
|
|
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
|
|
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
|
|
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
|
|
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
|
|
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
|
|
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
|
|
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
|
|
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
|
|
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
|
|
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
|
|
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
|
|
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
|
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
|
}
|
|
|
|
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
|
|
|
|
return wtype;
|
|
}
|
|
|
|
size_t ggml_tensor_overhead(void) {
|
|
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
|
|
}
|
|
|
|
bool ggml_is_transposed(const struct ggml_tensor * tensor) {
|
|
return tensor->nb[0] > tensor->nb[1];
|
|
}
|
|
|
|
bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
|
|
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
|
|
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
|
}
|
|
|
|
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
|
|
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
|
}
|
|
|
|
static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
(t0->ne[0] == t1->ne[0] ) &&
|
|
(t0->ne[1] == t1->ne[1] ) &&
|
|
(t0->ne[2] == t1->ne[2] ) &&
|
|
(t0->ne[3] == t1->ne[3] );
|
|
}
|
|
|
|
// check if t1 can be represented as a repeatition of t0
|
|
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return
|
|
(t1->ne[0]%t0->ne[0] == 0) &&
|
|
(t1->ne[1]%t0->ne[1] == 0) &&
|
|
(t1->ne[2]%t0->ne[2] == 0) &&
|
|
(t1->ne[3]%t0->ne[3] == 0);
|
|
}
|
|
|
|
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
|
|
}
|
|
|
|
static inline int ggml_up32(int n) {
|
|
return (n + 31) & ~31;
|
|
}
|
|
|
|
//static inline int ggml_up64(int n) {
|
|
// return (n + 63) & ~63;
|
|
//}
|
|
|
|
static inline int ggml_up(int n, int m) {
|
|
// assert m is a power of 2
|
|
GGML_ASSERT((m & (m - 1)) == 0);
|
|
return (n + m - 1) & ~(m - 1);
|
|
}
|
|
|
|
// assert that pointer is aligned to GGML_MEM_ALIGN
|
|
#define ggml_assert_aligned(ptr) \
|
|
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|
// make this function thread safe
|
|
ggml_critical_section_start();
|
|
|
|
static bool is_first_call = true;
|
|
|
|
if (is_first_call) {
|
|
// initialize time system (required on Windows)
|
|
ggml_time_init();
|
|
|
|
// initialize GELU, SILU and EXP F32 tables
|
|
{
|
|
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
|
|
|
|
ggml_fp16_t ii;
|
|
for (int i = 0; i < (1 << 16); ++i) {
|
|
uint16_t ui = i;
|
|
memcpy(&ii, &ui, sizeof(ii));
|
|
const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
|
|
table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
|
|
table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
|
|
table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
|
|
}
|
|
|
|
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
|
|
|
GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
|
}
|
|
|
|
// initialize g_state
|
|
{
|
|
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
|
|
|
|
g_state = (struct ggml_state) {
|
|
/*.contexts =*/ { { 0 } },
|
|
};
|
|
|
|
for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
|
|
g_state.contexts[i].used = false;
|
|
}
|
|
|
|
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
|
|
|
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
|
|
}
|
|
|
|
#if defined(GGML_USE_CUBLAS)
|
|
ggml_init_cublas();
|
|
#elif defined(GGML_USE_CLBLAST)
|
|
ggml_cl_init();
|
|
#endif
|
|
|
|
is_first_call = false;
|
|
}
|
|
|
|
// find non-used context in g_state
|
|
struct ggml_context * ctx = NULL;
|
|
|
|
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
|
|
if (!g_state.contexts[i].used) {
|
|
g_state.contexts[i].used = true;
|
|
ctx = &g_state.contexts[i].context;
|
|
|
|
GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ctx == NULL) {
|
|
GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
|
|
|
|
ggml_critical_section_end();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
|
|
|
|
*ctx = (struct ggml_context) {
|
|
/*.mem_size =*/ mem_size,
|
|
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
|
|
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
|
|
/*.no_alloc =*/ params.no_alloc,
|
|
/*.no_alloc_save =*/ params.no_alloc,
|
|
/*.n_objects =*/ 0,
|
|
/*.objects_begin =*/ NULL,
|
|
/*.objects_end =*/ NULL,
|
|
/*.scratch =*/ { 0, 0, NULL, },
|
|
/*.scratch_save =*/ { 0, 0, NULL, },
|
|
};
|
|
|
|
GGML_ASSERT(ctx->mem_buffer != NULL);
|
|
|
|
ggml_assert_aligned(ctx->mem_buffer);
|
|
|
|
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
|
|
|
|
ggml_critical_section_end();
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void ggml_free(struct ggml_context * ctx) {
|
|
// make this function thread safe
|
|
ggml_critical_section_start();
|
|
|
|
bool found = false;
|
|
|
|
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
|
|
if (&g_state.contexts[i].context == ctx) {
|
|
g_state.contexts[i].used = false;
|
|
|
|
GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
|
|
__func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
|
|
|
|
if (ctx->mem_buffer_owned) {
|
|
GGML_ALIGNED_FREE(ctx->mem_buffer);
|
|
}
|
|
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
GGML_PRINT_DEBUG("%s: context not found\n", __func__);
|
|
}
|
|
|
|
ggml_critical_section_end();
|
|
}
|
|
|
|
size_t ggml_used_mem(const struct ggml_context * ctx) {
|
|
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
|
|
}
|
|
|
|
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
|
|
const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
|
|
|
|
ctx->scratch = scratch;
|
|
|
|
return result;
|
|
}
|
|
|
|
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
|
|
ctx->no_alloc = no_alloc;
|
|
}
|
|
|
|
void * ggml_get_mem_buffer(struct ggml_context * ctx) {
|
|
return ctx->mem_buffer;
|
|
}
|
|
|
|
size_t ggml_get_mem_size(struct ggml_context * ctx) {
|
|
return ctx->mem_size;
|
|
}
|
|
|
|
// IMPORTANT:
|
|
// when creating "opt" tensors, always save and load the scratch buffer
|
|
// this is an error prone process, but it is necessary to support inplace
|
|
// operators when using scratch buffers
|
|
// TODO: implement a better way
|
|
void ggml_scratch_save(struct ggml_context * ctx) {
|
|
// this is needed to allow opt tensors to store their data
|
|
// TODO: again, need to find a better way
|
|
ctx->no_alloc_save = ctx->no_alloc;
|
|
ctx->no_alloc = false;
|
|
|
|
ctx->scratch_save = ctx->scratch;
|
|
ctx->scratch.data = NULL;
|
|
}
|
|
|
|
void ggml_scratch_load(struct ggml_context * ctx) {
|
|
ctx->no_alloc = ctx->no_alloc_save;
|
|
|
|
ctx->scratch = ctx->scratch_save;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct ggml_tensor * ggml_new_tensor_impl(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int64_t* ne,
|
|
void* data) {
|
|
// always insert objects at the end of the context's memory pool
|
|
struct ggml_object * obj_cur = ctx->objects_end;
|
|
|
|
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
|
|
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
|
|
const size_t cur_end = cur_offs + cur_size;
|
|
|
|
size_t size_needed = 0;
|
|
|
|
if (data == NULL && !ctx->no_alloc) {
|
|
size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
|
|
for (int i = 1; i < n_dims; i++) {
|
|
size_needed *= ne[i];
|
|
}
|
|
// align to GGML_MEM_ALIGN
|
|
size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
|
|
}
|
|
|
|
char * const mem_buffer = ctx->mem_buffer;
|
|
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
|
|
|
|
if (ctx->scratch.data == NULL || data != NULL) {
|
|
size_needed += GGML_TENSOR_SIZE;
|
|
|
|
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
|
|
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
|
|
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
|
|
assert(false);
|
|
return NULL;
|
|
}
|
|
|
|
*obj_new = (struct ggml_object) {
|
|
.offs = cur_end + GGML_OBJECT_SIZE,
|
|
.size = size_needed,
|
|
.next = NULL,
|
|
};
|
|
} else {
|
|
if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
|
|
GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
|
|
__func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
|
|
assert(false);
|
|
return NULL;
|
|
}
|
|
|
|
if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
|
|
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
|
|
__func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
|
|
assert(false);
|
|
return NULL;
|
|
}
|
|
|
|
data = (char * const) ctx->scratch.data + ctx->scratch.offs;
|
|
|
|
*obj_new = (struct ggml_object) {
|
|
.offs = cur_end + GGML_OBJECT_SIZE,
|
|
.size = GGML_TENSOR_SIZE,
|
|
.next = NULL,
|
|
};
|
|
|
|
//printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
|
|
|
|
ctx->scratch.offs += size_needed;
|
|
}
|
|
|
|
if (obj_cur != NULL) {
|
|
obj_cur->next = obj_new;
|
|
} else {
|
|
// this is the first object in this context
|
|
ctx->objects_begin = obj_new;
|
|
}
|
|
|
|
ctx->objects_end = obj_new;
|
|
|
|
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
|
|
|
|
struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
|
|
|
|
ggml_assert_aligned(result);
|
|
|
|
*result = (struct ggml_tensor) {
|
|
/*.type =*/ type,
|
|
/*.backend =*/ GGML_BACKEND_CPU,
|
|
/*.n_dims =*/ n_dims,
|
|
/*.ne =*/ { 1, 1, 1, 1 },
|
|
/*.nb =*/ { 0, 0, 0, 0 },
|
|
/*.op =*/ GGML_OP_NONE,
|
|
/*.is_param =*/ false,
|
|
/*.grad =*/ NULL,
|
|
/*.src0 =*/ NULL,
|
|
/*.src1 =*/ NULL,
|
|
/*.opt =*/ { NULL },
|
|
/*.n_tasks =*/ 0,
|
|
/*.perf_runs =*/ 0,
|
|
/*.perf_cycles =*/ 0,
|
|
/*.perf_time_us =*/ 0,
|
|
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
|
|
/*.name =*/ { 0 },
|
|
/*.extra =*/ NULL,
|
|
/*.pad =*/ { 0 },
|
|
};
|
|
|
|
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
|
|
//ggml_assert_aligned(result->data);
|
|
|
|
for (int i = 0; i < n_dims; i++) {
|
|
result->ne[i] = ne[i];
|
|
}
|
|
|
|
result->nb[0] = GGML_TYPE_SIZE[type];
|
|
result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
|
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
|
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
|
|
}
|
|
|
|
ctx->n_objects++;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_tensor(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int64_t * ne) {
|
|
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_tensor_1d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0) {
|
|
return ggml_new_tensor(ctx, type, 1, &ne0);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_tensor_2d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1) {
|
|
const int64_t ne[2] = { ne0, ne1 };
|
|
return ggml_new_tensor(ctx, type, 2, ne);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_tensor_3d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2) {
|
|
const int64_t ne[3] = { ne0, ne1, ne2 };
|
|
return ggml_new_tensor(ctx, type, 3, ne);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_tensor_4d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3) {
|
|
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
|
return ggml_new_tensor(ctx, type, 4, ne);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
ggml_set_i32(result, value);
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
ggml_set_f32(result, value);
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
|
|
return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
|
|
memset(tensor->data, 0, ggml_nbytes(tensor));
|
|
return tensor;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
|
|
const int n = ggml_nrows(tensor);
|
|
const int nc = tensor->ne[0];
|
|
const size_t n1 = tensor->nb[1];
|
|
|
|
char * const data = tensor->data;
|
|
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_I8:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(int8_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_I16:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(int16_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_I32:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(int32_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(float));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
return tensor;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
|
|
const int n = ggml_nrows(tensor);
|
|
const int nc = tensor->ne[0];
|
|
const size_t n1 = tensor->nb[1];
|
|
|
|
char * const data = tensor->data;
|
|
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_I8:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(int8_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_I16:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(int16_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_I32:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(int32_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
assert(tensor->nb[0] == sizeof(float));
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
|
|
}
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
return tensor;
|
|
}
|
|
|
|
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_I8:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
|
|
return ((int8_t *)(tensor->data))[i];
|
|
} break;
|
|
case GGML_TYPE_I16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
|
|
return ((int16_t *)(tensor->data))[i];
|
|
} break;
|
|
case GGML_TYPE_I32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
|
|
return ((int32_t *)(tensor->data))[i];
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
|
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
|
return ((float *)(tensor->data))[i];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_I8:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
|
|
((int8_t *)(tensor->data))[i] = value;
|
|
} break;
|
|
case GGML_TYPE_I16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
|
|
((int16_t *)(tensor->data))[i] = value;
|
|
} break;
|
|
case GGML_TYPE_I32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
|
|
((int32_t *)(tensor->data))[i] = value;
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
|
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
|
((float *)(tensor->data))[i] = value;
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_I8:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
|
|
return ((int8_t *)(tensor->data))[i];
|
|
} break;
|
|
case GGML_TYPE_I16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
|
|
return ((int16_t *)(tensor->data))[i];
|
|
} break;
|
|
case GGML_TYPE_I32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
|
|
return ((int32_t *)(tensor->data))[i];
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
|
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
|
return ((float *)(tensor->data))[i];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
|
|
switch (tensor->type) {
|
|
case GGML_TYPE_I8:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
|
|
((int8_t *)(tensor->data))[i] = value;
|
|
} break;
|
|
case GGML_TYPE_I16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
|
|
((int16_t *)(tensor->data))[i] = value;
|
|
} break;
|
|
case GGML_TYPE_I32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
|
|
((int32_t *)(tensor->data))[i] = value;
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
|
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
|
((float *)(tensor->data))[i] = value;
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void * ggml_get_data(const struct ggml_tensor * tensor) {
|
|
return tensor->data;
|
|
}
|
|
|
|
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
|
|
assert(tensor->type == GGML_TYPE_F32);
|
|
return (float *)(tensor->data);
|
|
}
|
|
|
|
const char * ggml_get_name(const struct ggml_tensor * tensor) {
|
|
return tensor->name;
|
|
}
|
|
|
|
void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
|
|
strncpy(tensor->name, name, sizeof(tensor->name));
|
|
tensor->name[sizeof(tensor->name) - 1] = '\0';
|
|
}
|
|
|
|
struct ggml_tensor * ggml_view_tensor(
|
|
struct ggml_context * ctx,
|
|
const struct ggml_tensor * src) {
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
|
|
|
|
result->nb[0] = src->nb[0];
|
|
result->nb[1] = src->nb[1];
|
|
result->nb[2] = src->nb[2];
|
|
result->nb[3] = src->nb[3];
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
|
|
struct ggml_object * obj = ctx->objects_begin;
|
|
|
|
char * const mem_buffer = ctx->mem_buffer;
|
|
|
|
while (obj != NULL) {
|
|
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
|
|
if (strcmp(cur->name, name) == 0) {
|
|
return cur;
|
|
}
|
|
|
|
obj = obj->next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// ggml_dup
|
|
|
|
struct ggml_tensor * ggml_dup_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_DUP;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_dup(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_dup_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_dup_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_dup_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_add
|
|
|
|
struct ggml_tensor * ggml_add_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_ADD;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_add(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_add_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_add_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_add_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_add1
|
|
|
|
struct ggml_tensor * ggml_add1_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_is_scalar(b));
|
|
GGML_ASSERT(ggml_is_padded_1d(a));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_ADD1;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_add1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_add1_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_add1_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_add1_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_acc
|
|
|
|
struct ggml_tensor * ggml_acc_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
|
|
GGML_ASSERT(ggml_is_contiguous(a));
|
|
GGML_ASSERT(a->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(b->type == GGML_TYPE_F32);
|
|
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad || b->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
|
|
|
|
((int32_t *) c->data)[0] = nb1;
|
|
((int32_t *) c->data)[1] = nb2;
|
|
((int32_t *) c->data)[2] = nb3;
|
|
((int32_t *) c->data)[3] = offset;
|
|
((int32_t *) c->data)[4] = inplace ? 1 : 0;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_ACC;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
result->opt[0] = c;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_acc(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset) {
|
|
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_acc_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset) {
|
|
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
|
}
|
|
|
|
// ggml_sub
|
|
|
|
struct ggml_tensor * ggml_sub_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad || b->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SUB;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sub(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_sub_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sub_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_sub_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_mul
|
|
|
|
struct ggml_tensor * ggml_mul_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
// TODO: support less-strict constraint
|
|
// GGML_ASSERT(ggml_can_repeat(b, a));
|
|
GGML_ASSERT(ggml_can_repeat_rows(b, a));
|
|
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad || b->grad)) {
|
|
// TODO: support backward pass for broadcasting
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
is_node = true;
|
|
}
|
|
|
|
if (inplace) {
|
|
GGML_ASSERT(is_node == false);
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_MUL;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_mul(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_mul_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_mul_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_mul_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_div
|
|
|
|
struct ggml_tensor * ggml_div_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad || b->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
if (inplace) {
|
|
GGML_ASSERT(is_node == false);
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_DIV;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_div(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_div_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_div_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_div_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_sqr
|
|
|
|
struct ggml_tensor * ggml_sqr_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SQR;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sqr(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_sqr_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sqr_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_sqr_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_sqrt
|
|
|
|
struct ggml_tensor * ggml_sqrt_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SQRT;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sqrt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_sqrt_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sqrt_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_sqrt_impl(ctx, a, true);
|
|
}
|
|
|
|
|
|
// ggml_log
|
|
|
|
struct ggml_tensor * ggml_log_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_LOG;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_log(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_log_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_log_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_log_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_sum
|
|
|
|
struct ggml_tensor * ggml_sum(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
|
|
|
|
result->op = GGML_OP_SUM;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// ggml_sum_rows
|
|
|
|
struct ggml_tensor * ggml_sum_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
int64_t ne[4] = {1,1,1,1};
|
|
for (int i=1; i<a->n_dims; ++i) {
|
|
ne[i] = a->ne[i];
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
|
|
|
|
result->op = GGML_OP_SUM_ROWS;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_mean
|
|
|
|
struct ggml_tensor * ggml_mean(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
is_node = true;
|
|
}
|
|
|
|
int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
|
|
|
|
result->op = GGML_OP_MEAN;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_repeat
|
|
|
|
struct ggml_tensor * ggml_repeat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_can_repeat(a, b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
if (ggml_are_same_shape(a, b) && !is_node) {
|
|
return a;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
|
|
|
|
result->op = GGML_OP_REPEAT;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_repeat_back
|
|
|
|
struct ggml_tensor * ggml_repeat_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_can_repeat(b, a));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
if (ggml_are_same_shape(a, b) && !is_node) {
|
|
return a;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
|
|
|
|
result->op = GGML_OP_REPEAT_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_abs
|
|
|
|
struct ggml_tensor * ggml_abs_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_ABS;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_abs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_abs_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_abs_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_abs_impl(ctx, a, true);
|
|
}
|
|
|
|
|
|
// ggml_sgn
|
|
|
|
struct ggml_tensor * ggml_sgn_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SGN;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sgn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_sgn_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_sgn_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_sgn_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_neg
|
|
|
|
struct ggml_tensor * ggml_neg_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_NEG;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_neg(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_neg_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_neg_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_neg_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_step
|
|
|
|
struct ggml_tensor * ggml_step_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_STEP;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_step(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_step_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_step_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_step_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_relu
|
|
|
|
struct ggml_tensor * ggml_relu_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_RELU;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_relu_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_relu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_relu_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_gelu
|
|
|
|
struct ggml_tensor * ggml_gelu_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_GELU;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_gelu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_gelu_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_gelu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_gelu_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_silu
|
|
|
|
struct ggml_tensor * ggml_silu_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SILU;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_silu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_silu_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_silu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_silu_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_silu_back
|
|
|
|
struct ggml_tensor * ggml_silu_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
// TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SILU_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_norm
|
|
|
|
struct ggml_tensor * ggml_norm_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
GGML_ASSERT(false); // TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_NORM;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL; // TODO: maybe store epsilon here?
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_norm_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_norm_impl(ctx, a, true);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_rms_norm_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_RMS_NORM;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL; // TODO: maybe store epsilon here?
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_rms_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_rms_norm_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_rms_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_rms_norm_impl(ctx, a, true);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_rms_norm_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
// TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_RMS_NORM_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// ggml_mul_mat
|
|
|
|
struct ggml_tensor * ggml_mul_mat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
|
GGML_ASSERT(!ggml_is_transposed(a));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
|
|
|
|
result->op = GGML_OP_MUL_MAT;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_out_prod
|
|
|
|
struct ggml_tensor * ggml_out_prod(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_can_out_prod(a, b));
|
|
GGML_ASSERT(!ggml_is_transposed(a));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
|
|
|
|
result->op = GGML_OP_OUT_PROD;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_scale
|
|
|
|
struct ggml_tensor * ggml_scale_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_is_scalar(b));
|
|
GGML_ASSERT(ggml_is_padded_1d(a));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SCALE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_scale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_scale_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_scale_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_scale_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_set
|
|
|
|
struct ggml_tensor * ggml_set_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
// make a view of the destination
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
|
|
|
|
(( int32_t * ) c->data)[0] = nb1;
|
|
(( int32_t * ) c->data)[1] = nb2;
|
|
(( int32_t * ) c->data)[2] = nb3;
|
|
(( int32_t * ) c->data)[3] = offset;
|
|
(( int32_t * ) c->data)[4] = inplace ? 1 : 0;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_SET;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
result->opt[0] = c;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset) {
|
|
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset) {
|
|
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset) {
|
|
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_1d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset) {
|
|
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset) {
|
|
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_set_2d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset) {
|
|
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
|
}
|
|
|
|
|
|
// ggml_cpy
|
|
|
|
struct ggml_tensor * ggml_cpy_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad || b->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
// make a view of the destination
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
|
|
|
|
result->op = GGML_OP_CPY;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_cpy(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_cpy_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_cpy_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_cpy_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_cont
|
|
|
|
struct ggml_tensor * ggml_cont_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_CONT;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_cont(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_cont_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_cont_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_cont_impl(ctx, a, true);
|
|
}
|
|
|
|
// ggml_reshape
|
|
|
|
struct ggml_tensor * ggml_reshape(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_is_contiguous(a));
|
|
GGML_ASSERT(ggml_is_contiguous(b));
|
|
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
if (b->grad) {
|
|
// gradient propagation is not supported
|
|
//GGML_ASSERT(false);
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
|
|
|
|
result->op = GGML_OP_RESHAPE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_reshape_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0) {
|
|
GGML_ASSERT(ggml_is_contiguous(a));
|
|
GGML_ASSERT(ggml_nelements(a) == ne0);
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[1] = { ne0 };
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
|
|
|
|
result->op = GGML_OP_RESHAPE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_reshape_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1) {
|
|
GGML_ASSERT(ggml_is_contiguous(a));
|
|
GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[2] = { ne0, ne1 };
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
|
|
|
|
result->op = GGML_OP_RESHAPE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_reshape_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2) {
|
|
GGML_ASSERT(ggml_is_contiguous(a));
|
|
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[3] = { ne0, ne1, ne2 };
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
|
|
|
|
result->op = GGML_OP_RESHAPE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
struct ggml_tensor * ggml_reshape_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3) {
|
|
GGML_ASSERT(ggml_is_contiguous(a));
|
|
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
|
|
|
|
result->op = GGML_OP_RESHAPE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_view_1d
|
|
|
|
struct ggml_tensor * ggml_view_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
size_t offset) {
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
|
|
memcpy(offs->data, &offset, 2*sizeof(int32_t));
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_VIEW;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
result->opt[0] = offs;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_view_2d
|
|
|
|
struct ggml_tensor * ggml_view_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
size_t nb1,
|
|
size_t offset) {
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
|
|
memcpy(offs->data, &offset, 2*sizeof(int32_t));
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->nb[1] = nb1;
|
|
result->nb[2] = result->nb[1]*ne1;
|
|
result->nb[3] = result->nb[2];
|
|
|
|
result->op = GGML_OP_VIEW;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
result->opt[0] = offs;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_view_3d
|
|
|
|
struct ggml_tensor * ggml_view_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t offset) {
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
|
|
memcpy(offs->data, &offset, 2*sizeof(int32_t));
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->nb[1] = nb1;
|
|
result->nb[2] = nb2;
|
|
result->nb[3] = result->nb[2]*ne2;
|
|
|
|
result->op = GGML_OP_VIEW;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
result->opt[0] = offs;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_view_4d
|
|
|
|
struct ggml_tensor * ggml_view_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset) {
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
|
|
memcpy(offs->data, &offset, 2*sizeof(int32_t));
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->nb[1] = nb1;
|
|
result->nb[2] = nb2;
|
|
result->nb[3] = nb3;
|
|
|
|
result->op = GGML_OP_VIEW;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
result->opt[0] = offs;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_permute
|
|
|
|
struct ggml_tensor * ggml_permute(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int axis0,
|
|
int axis1,
|
|
int axis2,
|
|
int axis3) {
|
|
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
|
|
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
|
|
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
|
|
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
|
|
|
|
GGML_ASSERT(axis0 != axis1);
|
|
GGML_ASSERT(axis0 != axis2);
|
|
GGML_ASSERT(axis0 != axis3);
|
|
GGML_ASSERT(axis1 != axis2);
|
|
GGML_ASSERT(axis1 != axis3);
|
|
GGML_ASSERT(axis2 != axis3);
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
|
|
|
int ne[GGML_MAX_DIMS];
|
|
int nb[GGML_MAX_DIMS];
|
|
|
|
ne[axis0] = a->ne[0];
|
|
ne[axis1] = a->ne[1];
|
|
ne[axis2] = a->ne[2];
|
|
ne[axis3] = a->ne[3];
|
|
|
|
nb[axis0] = a->nb[0];
|
|
nb[axis1] = a->nb[1];
|
|
nb[axis2] = a->nb[2];
|
|
nb[axis3] = a->nb[3];
|
|
|
|
result->ne[0] = ne[0];
|
|
result->ne[1] = ne[1];
|
|
result->ne[2] = ne[2];
|
|
result->ne[3] = ne[3];
|
|
|
|
result->nb[0] = nb[0];
|
|
result->nb[1] = nb[1];
|
|
result->nb[2] = nb[2];
|
|
result->nb[3] = nb[3];
|
|
|
|
result->op = GGML_OP_PERMUTE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
if (is_node) {
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
|
|
|
|
((int32_t *) b->data)[0] = axis0;
|
|
((int32_t *) b->data)[1] = axis1;
|
|
((int32_t *) b->data)[2] = axis2;
|
|
((int32_t *) b->data)[3] = axis3;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->opt[0] = b;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_transpose
|
|
|
|
struct ggml_tensor * ggml_transpose(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
|
|
|
result->ne[0] = a->ne[1];
|
|
result->ne[1] = a->ne[0];
|
|
|
|
result->nb[0] = a->nb[1];
|
|
result->nb[1] = a->nb[0];
|
|
|
|
result->op = GGML_OP_TRANSPOSE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_get_rows
|
|
|
|
struct ggml_tensor * ggml_get_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
// TODO: implement non F32 return
|
|
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
|
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
|
|
|
|
result->op = GGML_OP_GET_ROWS;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_get_rows_back
|
|
|
|
struct ggml_tensor * ggml_get_rows_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c) {
|
|
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
// TODO: implement non F32 return
|
|
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
|
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
|
|
|
|
result->op = GGML_OP_GET_ROWS_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
result->opt[0] = c;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_diag
|
|
|
|
struct ggml_tensor * ggml_diag(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
GGML_ASSERT(a->ne[1] == 1);
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
|
|
|
|
result->op = GGML_OP_DIAG;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// ggml_diag_mask_inf
|
|
|
|
struct ggml_tensor * ggml_diag_mask_inf_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
|
|
|
|
((int32_t *) b->data)[0] = n_past;
|
|
((int32_t *) b->data)[1] = inplace ? 1 : 0;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_DIAG_MASK_INF;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_diag_mask_inf(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past) {
|
|
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
|
|
}
|
|
|
|
|
|
struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past) {
|
|
return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
|
|
}
|
|
|
|
// ggml_diag_mask_zero
|
|
|
|
struct ggml_tensor * ggml_diag_mask_zero_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
|
|
ggml_set_name(b, "n_past, inplace");
|
|
|
|
((int32_t *) b->data)[0] = n_past;
|
|
((int32_t *) b->data)[1] = inplace ? 1 : 0;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_DIAG_MASK_ZERO;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_diag_mask_zero(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past) {
|
|
return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past) {
|
|
return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
|
|
}
|
|
|
|
// ggml_soft_max
|
|
|
|
struct ggml_tensor * ggml_soft_max_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SOFT_MAX;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_soft_max(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_soft_max_impl(ctx, a, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_soft_max_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a) {
|
|
return ggml_soft_max_impl(ctx, a, true);
|
|
}
|
|
|
|
|
|
// ggml_soft_max_back
|
|
|
|
struct ggml_tensor * ggml_soft_max_back_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true; // TODO : implement backward pass
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_SOFT_MAX_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_soft_max_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_soft_max_back_impl(ctx, a, b, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_soft_max_back_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
return ggml_soft_max_back_impl(ctx, a, b, true);
|
|
}
|
|
|
|
// ggml_rope
|
|
|
|
struct ggml_tensor * ggml_rope_impl(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode,
|
|
bool inplace) {
|
|
GGML_ASSERT(n_past >= 0);
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
|
|
|
|
((int32_t *) b->data)[0] = n_past;
|
|
((int32_t *) b->data)[1] = n_dims;
|
|
((int32_t *) b->data)[2] = mode;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_ROPE;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_rope(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode) {
|
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_rope_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode) {
|
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
|
|
}
|
|
|
|
// ggml_rope_back
|
|
|
|
struct ggml_tensor * ggml_rope_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_dims,
|
|
int mode) {
|
|
GGML_ASSERT(n_past >= 0);
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
is_node = false; // TODO: implement backward
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
|
|
ggml_set_name(b, "n_past, n_dims, mode");
|
|
|
|
((int32_t *) b->data)[0] = n_past;
|
|
((int32_t *) b->data)[1] = n_dims;
|
|
((int32_t *) b->data)[2] = mode;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_ROPE_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_alibi
|
|
|
|
struct ggml_tensor * ggml_alibi(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past,
|
|
int n_head,
|
|
float bias_max) {
|
|
GGML_ASSERT(n_past >= 0);
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
GGML_ASSERT(false); // TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
// TODO: when implement backward, fix this:
|
|
//struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
|
|
|
|
((int32_t *) b->data)[0] = n_past;
|
|
((int32_t *) b->data)[1] = n_head;
|
|
GGML_ASSERT(sizeof(float) == sizeof(int32_t));
|
|
(((float *) b->data)[2]) = bias_max;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_ALIBI;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_clamp
|
|
|
|
struct ggml_tensor * ggml_clamp(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float min,
|
|
float max) {
|
|
bool is_node = false;
|
|
|
|
if (a->grad) {
|
|
GGML_ASSERT(false); // TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
// TODO: when implement backward, fix this:
|
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
|
|
|
ggml_scratch_save(ctx);
|
|
|
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
|
|
|
|
((float *) b->data)[0] = min;
|
|
((float *) b->data)[1] = max;
|
|
|
|
ggml_scratch_load(ctx);
|
|
|
|
result->op = GGML_OP_CLAMP;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_conv_1d_1s
|
|
|
|
struct ggml_tensor * ggml_conv_1d_1s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_is_matrix(b));
|
|
GGML_ASSERT(a->ne[1] == b->ne[1]);
|
|
GGML_ASSERT(a->ne[3] == 1);
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
GGML_ASSERT(false); // TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
|
|
|
result->op = GGML_OP_CONV_1D_1S;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_conv_1d_2s
|
|
|
|
struct ggml_tensor * ggml_conv_1d_2s(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_is_matrix(b));
|
|
GGML_ASSERT(a->ne[1] == b->ne[1]);
|
|
GGML_ASSERT(a->ne[3] == 1);
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
GGML_ASSERT(false); // TODO: implement backward
|
|
is_node = true;
|
|
}
|
|
|
|
const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
|
|
|
result->op = GGML_OP_CONV_1D_2S;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_flash_attn
|
|
|
|
struct ggml_tensor * ggml_flash_attn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
bool masked) {
|
|
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
|
// TODO: check if vT can be multiplied by (k*qT)
|
|
|
|
bool is_node = false;
|
|
|
|
if (q->grad || k->grad || v->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
|
|
|
|
result->op = GGML_OP_FLASH_ATTN;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = q;
|
|
result->src1 = k;
|
|
result->opt[0] = v;
|
|
result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_flash_ff
|
|
|
|
struct ggml_tensor * ggml_flash_ff(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b0,
|
|
struct ggml_tensor * b1,
|
|
struct ggml_tensor * c0,
|
|
struct ggml_tensor * c1) {
|
|
GGML_ASSERT(ggml_can_mul_mat(b0, a));
|
|
// TODO: more checks
|
|
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
|
|
|
|
result->op = GGML_OP_FLASH_FF;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b0;
|
|
result->opt[0] = b1;
|
|
result->opt[1] = c0;
|
|
result->opt[2] = c1;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_flash_attn_back
|
|
|
|
struct ggml_tensor * ggml_flash_attn_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * d,
|
|
bool masked) {
|
|
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
|
// TODO: check if vT can be multiplied by (k*qT)
|
|
|
|
// d shape [D,N,ne2,ne3]
|
|
// q shape [D,N,ne2,ne3]
|
|
// k shape [D,M,ne2,ne3]
|
|
// v shape [M,D,ne2,ne3]
|
|
|
|
const int64_t D = q->ne[0];
|
|
const int64_t N = q->ne[1];
|
|
const int64_t M = k->ne[1];
|
|
const int64_t ne2 = q->ne[2];
|
|
const int64_t ne3 = q->ne[3];
|
|
|
|
GGML_ASSERT(k->ne[0] == D);
|
|
GGML_ASSERT(v->ne[0] == M);
|
|
GGML_ASSERT(v->ne[1] == D);
|
|
GGML_ASSERT(d->ne[0] == D);
|
|
GGML_ASSERT(d->ne[1] == N);
|
|
GGML_ASSERT(k->ne[2] == ne2);
|
|
GGML_ASSERT(k->ne[3] == ne3);
|
|
GGML_ASSERT(v->ne[2] == ne2);
|
|
GGML_ASSERT(v->ne[3] == ne3);
|
|
GGML_ASSERT(d->ne[2] == ne2);
|
|
GGML_ASSERT(d->ne[3] == ne3);
|
|
|
|
bool is_node = false;
|
|
|
|
if (q->grad || k->grad || v->grad) {
|
|
// when using this operation (in backwards pass) these grads are set.
|
|
// we don't want to create (big) grad of our result, so is_node is false.
|
|
is_node = false;
|
|
}
|
|
|
|
// store gradients of q, k and v as continuous tensors concatenated in result.
|
|
// q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
|
|
// gradq->data = result->data
|
|
// gradk->data = result->data + nb0*D*N*ne2*ne3
|
|
// gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
|
|
// note: v and gradv are actually transposed, i.e. v->ne[0] != D.
|
|
int64_t ne[4] = {D,M+N+M,ne2,ne3};
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
|
|
|
result->op = GGML_OP_FLASH_ATTN_BACK;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = q;
|
|
result->src1 = k;
|
|
result->opt[0] = v;
|
|
result->opt[1] = d;
|
|
result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// ggml_map_unary
|
|
|
|
struct ggml_tensor * ggml_map_unary_impl_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
const ggml_unary_op_f32_t fun,
|
|
bool inplace) {
|
|
bool is_node = false;
|
|
|
|
if (!inplace && a->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
|
|
*((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
|
|
struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_MAP_UNARY;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->opt[0] = addr_tensor;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_map_unary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
const ggml_unary_op_f32_t fun) {
|
|
return ggml_map_unary_impl_f32(ctx, a, fun, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_map_unary_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
const ggml_unary_op_f32_t fun) {
|
|
return ggml_map_unary_impl_f32(ctx, a, fun, true);
|
|
}
|
|
|
|
// ggml_map_binary
|
|
|
|
struct ggml_tensor * ggml_map_binary_impl_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
const ggml_binary_op_f32_t fun,
|
|
bool inplace) {
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
|
|
bool is_node = false;
|
|
|
|
if (!inplace && (a->grad || b->grad)) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
|
|
*((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
|
|
struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_MAP_BINARY;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
result->opt[0] = addr_tensor;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_map_binary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
const ggml_binary_op_f32_t fun) {
|
|
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
|
|
}
|
|
|
|
struct ggml_tensor * ggml_map_binary_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
const ggml_binary_op_f32_t fun) {
|
|
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
|
|
}
|
|
|
|
// ggml_cross_entropy_loss
|
|
|
|
struct ggml_tensor * ggml_cross_entropy_loss(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b) {
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
bool is_node = false;
|
|
|
|
if (a->grad || b->grad) {
|
|
is_node = true;
|
|
}
|
|
|
|
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
|
|
|
|
result->op = GGML_OP_CROSS_ENTROPY_LOSS;
|
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
|
|
return result;
|
|
}
|
|
|
|
// ggml_cross_entropy_loss_back
|
|
|
|
struct ggml_tensor * ggml_cross_entropy_loss_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c) {
|
|
GGML_ASSERT(ggml_are_same_shape(a, b));
|
|
GGML_ASSERT(ggml_is_scalar(c));
|
|
|
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
|
|
|
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
|
|
result->grad = NULL;
|
|
result->src0 = a;
|
|
result->src1 = b;
|
|
result->opt[0] = c;
|
|
|
|
return result;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ggml_set_param(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * tensor) {
|
|
tensor->is_param = true;
|
|
|
|
GGML_ASSERT(tensor->grad == NULL);
|
|
tensor->grad = ggml_dup_tensor(ctx, tensor);
|
|
}
|
|
|
|
// ggml_compute_forward_dup
|
|
|
|
static void ggml_compute_forward_dup_same_cont(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
GGML_ASSERT(src0->type == dst->type);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb0 = dst->nb[0];
|
|
|
|
const int ith = params->ith; // thread index
|
|
const int nth = params->nth; // number of threads
|
|
|
|
// parallelize by elements
|
|
const int ne = ggml_nelements(dst);
|
|
const int dr = (ne + nth - 1) / nth;
|
|
const int ie0 = dr * ith;
|
|
const int ie1 = MIN(ie0 + dr, ne);
|
|
|
|
if (ie0 < ie1) {
|
|
memcpy(
|
|
((char *) dst->data + ie0*nb0),
|
|
((char *) src0->data + ie0*nb00),
|
|
(ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
|
|
}
|
|
|
|
}
|
|
static void ggml_compute_forward_dup_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith; // thread index
|
|
const int nth = params->nth; // number of threads
|
|
|
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
|
|
ggml_compute_forward_dup_same_cont(params, src0, dst);
|
|
return;
|
|
}
|
|
|
|
// parallelize by rows
|
|
const int nr = ne01;
|
|
// number of rows per thread
|
|
const int dr = (nr + nth - 1) / nth;
|
|
// row range for this thread
|
|
const int ir0 = dr * ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
if (src0->type == dst->type &&
|
|
ne00 == ne0 &&
|
|
nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
|
|
// copy by rows
|
|
const size_t rs = ne00*nb00;
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
memcpy(
|
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
|
rs);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
if (nb00 == sizeof(ggml_fp16_t)) {
|
|
if (dst->type == GGML_TYPE_F16) {
|
|
size_t id = 0;
|
|
const size_t rs = ne00 * nb00;
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += rs * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
|
id += rs;
|
|
}
|
|
id += rs * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else if (dst->type == GGML_TYPE_F32) {
|
|
size_t id = 0;
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += ne00 * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
|
id++;
|
|
}
|
|
}
|
|
id += ne00 * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else if (ggml_is_quantized(dst->type)) {
|
|
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
|
|
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
size_t id = 0;
|
|
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += rs * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
|
|
}
|
|
|
|
quantize_row_q(src0_f32, dst_ptr + id, ne00);
|
|
id += rs;
|
|
}
|
|
id += rs * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
}
|
|
} else {
|
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
size_t id = 0;
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += ne00 * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
|
|
id++;
|
|
}
|
|
}
|
|
id += ne00 * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
size_t id = 0;
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += ne00 * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
dst_ptr[id] = *src0_ptr;
|
|
id++;
|
|
}
|
|
}
|
|
id += ne00 * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// dst counters
|
|
int64_t i10 = 0;
|
|
int64_t i11 = 0;
|
|
int64_t i12 = 0;
|
|
int64_t i13 = 0;
|
|
|
|
if (dst->type == GGML_TYPE_F16) {
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
i10 += ne00 * ir0;
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
|
|
|
|
if (++i10 == ne00) {
|
|
i10 = 0;
|
|
if (++i11 == ne01) {
|
|
i11 = 0;
|
|
if (++i12 == ne02) {
|
|
i12 = 0;
|
|
if (++i13 == ne03) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
i10 += ne00 * (ne01 - ir1);
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (dst->type == GGML_TYPE_F32) {
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
i10 += ne00 * ir0;
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
|
|
|
|
if (++i10 == ne0) {
|
|
i10 = 0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
i10 += ne00 * (ne01 - ir1);
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_dup_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith; // thread index
|
|
const int nth = params->nth; // number of threads
|
|
|
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
|
|
ggml_compute_forward_dup_same_cont(params, src0, dst);
|
|
return;
|
|
}
|
|
|
|
// parallelize by rows
|
|
const int nr = ne01;
|
|
// number of rows per thread
|
|
const int dr = (nr + nth - 1) / nth;
|
|
// row range for this thread
|
|
const int ir0 = dr * ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
if (src0->type == dst->type &&
|
|
ne00 == ne0 &&
|
|
nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
|
|
// copy by rows
|
|
const size_t rs = ne00*nb00;
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
memcpy(
|
|
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
|
rs);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
// TODO: simplify
|
|
if (nb00 == sizeof(float)) {
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
size_t id = 0;
|
|
const size_t rs = ne00 * nb00;
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += rs * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
|
memcpy(dst_ptr + id, src0_ptr, rs);
|
|
id += rs;
|
|
}
|
|
id += rs * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
size_t id = 0;
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += ne00 * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
|
id++;
|
|
}
|
|
}
|
|
id += ne00 * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else if (ggml_is_quantized(dst->type)) {
|
|
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
|
|
|
|
size_t id = 0;
|
|
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
|
|
char * dst_ptr = (char *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += rs * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
|
|
id += rs;
|
|
}
|
|
id += rs * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
}
|
|
} else {
|
|
//printf("%s: this is not optimal - fix me\n", __func__);
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
size_t id = 0;
|
|
float * dst_ptr = (float *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += ne00 * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
dst_ptr[id] = *src0_ptr;
|
|
id++;
|
|
}
|
|
}
|
|
id += ne00 * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
size_t id = 0;
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
|
|
|
|
for (int i03 = 0; i03 < ne03; i03++) {
|
|
for (int i02 = 0; i02 < ne02; i02++) {
|
|
id += ne00 * ir0;
|
|
for (int i01 = ir0; i01 < ir1; i01++) {
|
|
for (int i00 = 0; i00 < ne00; i00++) {
|
|
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
|
|
id++;
|
|
}
|
|
}
|
|
id += ne00 * (ne01 - ir1);
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// dst counters
|
|
|
|
int64_t i10 = 0;
|
|
int64_t i11 = 0;
|
|
int64_t i12 = 0;
|
|
int64_t i13 = 0;
|
|
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
i10 += ne00 * ir0;
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
memcpy(dst_ptr, src0_ptr, sizeof(float));
|
|
|
|
if (++i10 == ne0) {
|
|
i10 = 0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
i10 += ne00 * (ne01 - ir1);
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (dst->type == GGML_TYPE_F16) {
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
i10 += ne00 * ir0;
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
|
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
|
|
|
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
|
|
|
|
if (++i10 == ne0) {
|
|
i10 = 0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
i10 += ne00 * (ne01 - ir1);
|
|
while (i10 >= ne0) {
|
|
i10 -= ne0;
|
|
if (++i11 == ne1) {
|
|
i11 = 0;
|
|
if (++i12 == ne2) {
|
|
i12 = 0;
|
|
if (++i13 == ne3) {
|
|
i13 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false); // TODO: implement
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_dup(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
|
|
ggml_compute_forward_dup_same_cont(params, src0, dst);
|
|
return;
|
|
}
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_dup_f16(params, src0, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_dup_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_add
|
|
|
|
static void ggml_compute_forward_add_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
if (nb10 == sizeof(float)) {
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
vDSP_vadd(
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
|
ne0);
|
|
#else
|
|
ggml_vec_add_f32(ne0,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
#endif
|
|
// }
|
|
// }
|
|
}
|
|
} else {
|
|
// src1 is not contiguous
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
|
|
|
|
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add_f16_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
if (nb10 == sizeof(float)) {
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// src1 is not contiguous
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add_f16_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
if (nb10 == sizeof(ggml_fp16_t)) {
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// src1 is not contiguous
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add_q_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
//const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const enum ggml_type type = src0->type;
|
|
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
|
|
quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
|
|
|
|
// we don't support permuted src0 or src1
|
|
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
GGML_ASSERT(ggml_is_quantized(src0->type));
|
|
GGML_ASSERT(dst->type == src0->type);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 indices
|
|
const int i03 = ir/(ne02*ne01);
|
|
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
|
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
// src1 and dst are same shape as src0 => same indices
|
|
const int i13 = i03;
|
|
const int i12 = i02;
|
|
const int i11 = i01;
|
|
|
|
const int i3 = i03;
|
|
const int i2 = i02;
|
|
const int i1 = i01;
|
|
|
|
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
|
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
|
|
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
|
|
|
|
assert(ne00 % 32 == 0);
|
|
|
|
// unquantize row from src0 to temp buffer
|
|
dequantize_row_q(src0_row, wdata, ne00);
|
|
// add src1
|
|
ggml_vec_acc_f32(ne00, wdata, src1_row);
|
|
// quantize row to dst
|
|
quantize_row_q(wdata, dst_row, ne00);
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_add_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
if (src1->type == GGML_TYPE_F16) {
|
|
ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
|
|
}
|
|
else if (src1->type == GGML_TYPE_F32) {
|
|
ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
ggml_compute_forward_add_q_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_add1
|
|
|
|
static void ggml_compute_forward_add1_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
UNUSED(ggml_vec_add1_f32);
|
|
|
|
vDSP_vadd(
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
|
(float *) ((char *) src1->data), 0,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
|
ne0);
|
|
#else
|
|
ggml_vec_add1_f32(ne0,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
*(float *) src1->data);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add1_f16_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// scalar to add
|
|
const float v = *(float *) src1->data;
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
for (int i = 0; i < ne0; i++) {
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add1_f16_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// scalar to add
|
|
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
for (int i = 0; i < ne0; i++) {
|
|
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add1_q_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// scalar to add
|
|
const float v = *(float *) src1->data;
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const enum ggml_type type = src0->type;
|
|
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
|
|
quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
|
|
|
|
// we don't support permuted src0
|
|
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
GGML_ASSERT(ggml_is_quantized(src0->type));
|
|
GGML_ASSERT(dst->type == src0->type);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
|
|
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
|
|
|
|
assert(ne0 % 32 == 0);
|
|
|
|
// unquantize row from src0 to temp buffer
|
|
dequantize_row_q(src0_row, wdata, ne0);
|
|
// add src1
|
|
ggml_vec_acc1_f32(ne0, wdata, v);
|
|
// quantize row to dst
|
|
quantize_row_q(wdata, dst_row, ne0);
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_add1(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_add1_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
if (src1->type == GGML_TYPE_F16) {
|
|
ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
|
|
}
|
|
else if (src1->type == GGML_TYPE_F32) {
|
|
ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
// ggml_compute_forward_acc
|
|
|
|
static void ggml_compute_forward_acc_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
GGML_ASSERT(opt0->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_nelements(opt0) == 5);
|
|
|
|
// view src0 and dst with these strides and data offset inbytes during acc
|
|
// nb0 is implicitely element_size because src0 and dst are contiguous
|
|
size_t nb1 = ((int32_t *) opt0->data)[0];
|
|
size_t nb2 = ((int32_t *) opt0->data)[1];
|
|
size_t nb3 = ((int32_t *) opt0->data)[2];
|
|
size_t offset = ((int32_t *) opt0->data)[3];
|
|
bool inplace = (bool) ((int32_t *) opt0->data)[4];
|
|
|
|
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
// => do it in INIT phase
|
|
memcpy(
|
|
((char *) dst->data),
|
|
((char *) src0->data),
|
|
ggml_nbytes(dst));
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
const int nc = src1->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
// src0 and dst as viewed during acc
|
|
const size_t nb0 = ggml_element_size(src0);
|
|
|
|
const size_t nb00 = nb0;
|
|
const size_t nb01 = nb1;
|
|
const size_t nb02 = nb2;
|
|
const size_t nb03 = nb3;
|
|
|
|
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
|
|
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 and dst are viewed with shape of src1 and offset
|
|
// => same indices
|
|
const int i3 = ir/(ne12*ne11);
|
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
vDSP_vadd(
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
|
|
#else
|
|
ggml_vec_add_f32(nc,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_acc(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_sub
|
|
|
|
static void ggml_compute_forward_sub_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
if (nb10 == sizeof(float)) {
|
|
for (int ir = 0; ir < nr; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
vDSP_vsub(
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
|
ne0);
|
|
#else
|
|
ggml_vec_sub_f32(ne0,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
#endif
|
|
// }
|
|
// }
|
|
}
|
|
} else {
|
|
// src1 is not contiguous
|
|
for (int ir = 0; ir < nr; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
|
|
|
|
dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_sub(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_sub_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_mul
|
|
|
|
static void ggml_compute_forward_mul_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
#ifdef GGML_USE_CLBLAST
|
|
if (src1->backend == GGML_BACKEND_GPU) {
|
|
if (ith == 0) {
|
|
ggml_cl_mul(src0, src1, dst);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
const int64_t nr = ggml_nrows(src0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
GGML_ASSERT(ne00 == ne10);
|
|
|
|
if (nb10 == sizeof(float)) {
|
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
|
// src0 and dst are same shape => same indices
|
|
const int64_t i03 = ir/(ne02*ne01);
|
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
const int64_t i13 = i03 % ne13;
|
|
const int64_t i12 = i02 % ne12;
|
|
const int64_t i11 = i01 % ne11;
|
|
|
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
UNUSED(ggml_vec_mul_f32);
|
|
|
|
vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
|
|
#else
|
|
ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
|
|
#endif
|
|
// }
|
|
// }
|
|
}
|
|
} else {
|
|
// src1 is not contiguous
|
|
for (int64_t ir = ith; ir < nr; ir += nth) {
|
|
// src0 and dst are same shape => same indices
|
|
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
|
const int64_t i03 = ir/(ne02*ne01);
|
|
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
|
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
const int64_t i13 = i03 % ne13;
|
|
const int64_t i12 = i02 % ne12;
|
|
const int64_t i11 = i01 % ne11;
|
|
|
|
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
|
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
|
|
|
for (int64_t i0 = 0; i0 < ne00; i0++) {
|
|
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
|
|
|
|
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_mul(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_mul_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_div
|
|
|
|
static void ggml_compute_forward_div_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nr = ggml_nrows(src0);
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t ne1 = src0->ne[1];
|
|
const int64_t ne2 = src0->ne[2];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
if (nb10 == sizeof(float)) {
|
|
for (int ir = 0; ir < nr; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
|
|
#ifdef GGML_USE_ACCELERATE
|
|
vDSP_vdiv(
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
|
|
ne0);
|
|
#else
|
|
ggml_vec_div_f32(ne0,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
|
|
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
#endif
|
|
// }
|
|
// }
|
|
}
|
|
} else {
|
|
// src1 is not contiguous
|
|
for (int ir = 0; ir < nr; ++ir) {
|
|
// src0, src1 and dst are same shape => same indices
|
|
const int i3 = ir/(ne2*ne1);
|
|
const int i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
|
|
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
|
|
for (int i0 = 0; i0 < ne0; i0++) {
|
|
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
|
|
|
|
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_div(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_div_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_sqr
|
|
|
|
static void ggml_compute_forward_sqr_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert( dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_sqr_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_sqr(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_sqr_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_sqrt
|
|
|
|
static void ggml_compute_forward_sqrt_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert( dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_sqrt_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_sqrt(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_sqrt_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
// ggml_compute_forward_log
|
|
|
|
static void ggml_compute_forward_log_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_log_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_log(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_log_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_sum
|
|
|
|
static void ggml_compute_forward_sum_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_is_scalar(dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
assert(ggml_is_scalar(dst));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
ggml_float sum = 0;
|
|
ggml_float row_sum = 0;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
ggml_vec_sum_ggf(ne00,
|
|
&row_sum,
|
|
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
|
|
sum += row_sum;
|
|
}
|
|
}
|
|
}
|
|
((float *) dst->data)[0] = sum;
|
|
}
|
|
|
|
static void ggml_compute_forward_sum(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_sum_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_sum_rows
|
|
|
|
static void ggml_compute_forward_sum_rows_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
GGML_ASSERT(dst->nb[0] == sizeof(float));
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
GGML_ASSERT(ne0 == 1);
|
|
GGML_ASSERT(ne1 == ne01);
|
|
GGML_ASSERT(ne2 == ne02);
|
|
GGML_ASSERT(ne3 == ne03);
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
for (int64_t i3 = 0; i3 < ne03; i3++) {
|
|
for (int64_t i2 = 0; i2 < ne02; i2++) {
|
|
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
|
float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
|
float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
|
float row_sum = 0;
|
|
ggml_vec_sum_f32(ne00, &row_sum, src_row);
|
|
dst_row[0] = row_sum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_sum_rows(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_sum_rows_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_mean
|
|
|
|
static void ggml_compute_forward_mean_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
assert(ne0 == 1);
|
|
assert(ne1 == ne01);
|
|
assert(ne2 == ne02);
|
|
assert(ne3 == ne03);
|
|
|
|
UNUSED(ne0);
|
|
UNUSED(ne1);
|
|
UNUSED(ne2);
|
|
UNUSED(ne3);
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
ggml_vec_sum_f32(ne00,
|
|
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
|
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
|
|
|
|
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_mean(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_mean_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_repeat
|
|
|
|
static void ggml_compute_forward_repeat_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
GGML_ASSERT(ggml_can_repeat(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
|
const int nr0 = (int)(ne0/ne00);
|
|
const int nr1 = (int)(ne1/ne01);
|
|
const int nr2 = (int)(ne2/ne02);
|
|
const int nr3 = (int)(ne3/ne03);
|
|
|
|
// TODO: support for transposed / permuted tensors
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
// TODO: maybe this is not optimal?
|
|
for (int i3 = 0; i3 < nr3; i3++) {
|
|
for (int k3 = 0; k3 < ne03; k3++) {
|
|
for (int i2 = 0; i2 < nr2; i2++) {
|
|
for (int k2 = 0; k2 < ne02; k2++) {
|
|
for (int i1 = 0; i1 < nr1; i1++) {
|
|
for (int k1 = 0; k1 < ne01; k1++) {
|
|
for (int i0 = 0; i0 < nr0; i0++) {
|
|
ggml_vec_cpy_f32(ne00,
|
|
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
|
|
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_repeat(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_repeat_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_repeat_back
|
|
|
|
static void ggml_compute_forward_repeat_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
// guaranteed to be an integer due to the check in ggml_can_repeat
|
|
const int nr0 = (int)(ne00/ne0);
|
|
const int nr1 = (int)(ne01/ne1);
|
|
const int nr2 = (int)(ne02/ne2);
|
|
const int nr3 = (int)(ne03/ne3);
|
|
|
|
// TODO: support for transposed / permuted tensors
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
if (ggml_is_contiguous(dst)) {
|
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
|
} else {
|
|
for (int k3 = 0; k3 < ne3; k3++) {
|
|
for (int k2 = 0; k2 < ne2; k2++) {
|
|
for (int k1 = 0; k1 < ne1; k1++) {
|
|
ggml_vec_set_f32(ne0,
|
|
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
|
|
0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: maybe this is not optimal?
|
|
for (int i3 = 0; i3 < nr3; i3++) {
|
|
for (int k3 = 0; k3 < ne3; k3++) {
|
|
for (int i2 = 0; i2 < nr2; i2++) {
|
|
for (int k2 = 0; k2 < ne2; k2++) {
|
|
for (int i1 = 0; i1 < nr1; i1++) {
|
|
for (int k1 = 0; k1 < ne1; k1++) {
|
|
for (int i0 = 0; i0 < nr0; i0++) {
|
|
ggml_vec_acc_f32(ne0,
|
|
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
|
|
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_repeat_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_repeat_back_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_abs
|
|
|
|
static void ggml_compute_forward_abs_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_abs_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_abs(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_abs_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_sgn
|
|
|
|
static void ggml_compute_forward_sgn_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_sgn_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_sgn(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_sgn_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_neg
|
|
|
|
static void ggml_compute_forward_neg_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_neg_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_neg(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_neg_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_step
|
|
|
|
static void ggml_compute_forward_step_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_step_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_step(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_step_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_relu
|
|
|
|
static void ggml_compute_forward_relu_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert(dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ggml_vec_relu_f32(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_relu(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_relu_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_gelu
|
|
|
|
static void ggml_compute_forward_gelu_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
ggml_vec_gelu_f32(nc,
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
#ifndef NDEBUG
|
|
for (int k = 0; k < nc; k++) {
|
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
UNUSED(x);
|
|
assert(!isnan(x));
|
|
assert(!isinf(x));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_gelu(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_gelu_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
//printf("XXXXXXXX gelu\n");
|
|
}
|
|
|
|
// ggml_compute_forward_silu
|
|
|
|
static void ggml_compute_forward_silu_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
ggml_vec_silu_f32(nc,
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i1*(src0->nb[1])));
|
|
|
|
#ifndef NDEBUG
|
|
for (int k = 0; k < nc; k++) {
|
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
UNUSED(x);
|
|
assert(!isnan(x));
|
|
assert(!isinf(x));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_silu(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_silu_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
// ggml_compute_forward_silu_back
|
|
|
|
static void ggml_compute_forward_silu_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * grad,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(grad));
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, grad));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
ggml_vec_silu_backward_f32(nc,
|
|
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i1*(src0->nb[1])),
|
|
(float *) ((char *) grad->data + i1*(grad->nb[1])));
|
|
|
|
#ifndef NDEBUG
|
|
for (int k = 0; k < nc; k++) {
|
|
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
|
|
UNUSED(x);
|
|
assert(!isnan(x));
|
|
assert(!isinf(x));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_silu_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * grad,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_norm
|
|
|
|
static void ggml_compute_forward_norm_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const float eps = 1e-5f; // TODO: make this a parameter
|
|
|
|
// TODO: optimize
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
ggml_float sum = 0.0;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
sum += (ggml_float)x[i00];
|
|
}
|
|
|
|
float mean = sum/ne00;
|
|
|
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
ggml_float sum2 = 0.0;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
float v = x[i00] - mean;
|
|
y[i00] = v;
|
|
sum2 += (ggml_float)(v*v);
|
|
}
|
|
|
|
float variance = sum2/ne00;
|
|
const float scale = 1.0f/sqrtf(variance + eps);
|
|
|
|
ggml_vec_scale_f32(ne00, y, scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_norm(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_norm_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rms_norm_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const float eps = 1e-6f; // TODO: make this a parameter
|
|
|
|
// TODO: optimize
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
|
|
ggml_float sum = 0.0;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
sum += (ggml_float)(x[i00] * x[i00]);
|
|
}
|
|
|
|
const float mean = sum/ne00;
|
|
|
|
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
memcpy(y, x, ne00 * sizeof(float));
|
|
// for (int i00 = 0; i00 < ne00; i00++) {
|
|
// y[i00] = x[i00];
|
|
// }
|
|
|
|
const float scale = 1.0f/sqrtf(mean + eps);
|
|
|
|
ggml_vec_scale_f32(ne00, y, scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rms_norm(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_rms_norm_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
static void ggml_compute_forward_rms_norm_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
const float eps = 1e-6f; // TODO: make this a parameter
|
|
|
|
// TODO: optimize
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
|
// src1 is same shape as src0 => same indices
|
|
const int64_t i11 = i01;
|
|
const int64_t i12 = i02;
|
|
const int64_t i13 = i03;
|
|
|
|
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
|
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
|
|
|
|
ggml_float sum_xx = 0.0;
|
|
ggml_float sum_xdz = 0.0;
|
|
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
sum_xx += (ggml_float)(x[i00] * x[i00]);
|
|
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
|
|
}
|
|
|
|
//const float mean = (float)(sum_xx)/ne00;
|
|
const float mean_eps = (float)(sum_xx)/ne00 + eps;
|
|
const float sum_eps = (float)(sum_xx) + eps*ne00;
|
|
//const float mean_xdz = (float)(sum_xdz)/ne00;
|
|
// we could cache rms from forward pass to improve performance.
|
|
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
|
|
//const float rms = sqrtf(mean_eps);
|
|
const float rrms = 1.0f / sqrtf(mean_eps);
|
|
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
|
|
|
|
{
|
|
// z = rms_norm(x)
|
|
//
|
|
// rms_norm(src0) =
|
|
// scale(
|
|
// src0,
|
|
// div(
|
|
// 1,
|
|
// sqrt(
|
|
// add(
|
|
// scale(
|
|
// sum(
|
|
// sqr(
|
|
// src0)),
|
|
// (1.0/N)),
|
|
// eps))));
|
|
|
|
// postorder:
|
|
// ## op args grad
|
|
// 00 param src0 grad[#00]
|
|
// 01 const 1
|
|
// 02 sqr (#00) grad[#02]
|
|
// 03 sum (#02) grad[#03]
|
|
// 04 const 1/N
|
|
// 05 scale (#03, #04) grad[#05]
|
|
// 06 const eps
|
|
// 07 add (#05, #06) grad[#07]
|
|
// 08 sqrt (#07) grad[#08]
|
|
// 09 div (#01,#08) grad[#09]
|
|
// 10 scale (#00,#09) grad[#10]
|
|
//
|
|
// backward pass, given grad[#10]
|
|
// #10: scale
|
|
// grad[#00] += scale(grad[#10],#09)
|
|
// grad[#09] += sum(mul(grad[#10],#00))
|
|
// #09: div
|
|
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
|
|
// #08: sqrt
|
|
// grad[#07] += mul(grad[#08], div(0.5, #08))
|
|
// #07: add
|
|
// grad[#05] += grad[#07]
|
|
// #05: scale
|
|
// grad[#03] += scale(grad[#05],#04)
|
|
// #03: sum
|
|
// grad[#02] += repeat(grad[#03], #02)
|
|
// #02:
|
|
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
|
|
//
|
|
// substitute and simplify:
|
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
|
|
// grad[#02] = repeat(grad[#03], #02)
|
|
// grad[#02] = repeat(scale(grad[#05],#04), #02)
|
|
// grad[#02] = repeat(scale(grad[#07],#04), #02)
|
|
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
|
|
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
|
|
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
|
|
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
|
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
|
|
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
|
|
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
|
|
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
|
|
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
|
|
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
|
|
// a = b*c + d*e
|
|
// a = b*c*f/f + d*e*f/f
|
|
// a = (b*c*f + d*e*f)*(1/f)
|
|
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
|
|
// a = (b + d*e/c)*c
|
|
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
|
|
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
|
|
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
|
|
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
|
|
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
|
|
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
|
|
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
|
|
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
|
|
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
|
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
|
}
|
|
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
|
|
// post-order:
|
|
// dx := x
|
|
// dx := scale(dx,-mean_xdz/mean_eps)
|
|
// dx := add(dx, dz)
|
|
// dx := scale(dx, rrms)
|
|
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
|
|
|
ggml_vec_cpy_f32 (ne00, dx, x);
|
|
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
|
|
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
|
|
ggml_vec_acc_f32 (ne00, dx, dz);
|
|
ggml_vec_scale_f32(ne00, dx, rrms);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rms_norm_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
// ggml_compute_forward_mul_mat
|
|
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
// helper function to determine if it is better to use BLAS or not
|
|
// for large matrices, BLAS is faster
|
|
static bool ggml_compute_forward_mul_mat_use_blas(
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
//const int64_t ne00 = src0->ne[0];
|
|
//const int64_t ne01 = src0->ne[1];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
if (ggml_is_contiguous(src0) &&
|
|
ggml_is_contiguous(src1) &&
|
|
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
|
|
|
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static void ggml_compute_forward_mul_mat_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
const int64_t ne10 = src1->ne[0];
|
|
#endif
|
|
const int64_t ne11 = src1->ne[1];
|
|
#ifndef NDEBUG
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nb00 = src0->nb[0];
|
|
#endif
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
const int nb03 = src0->nb[3];
|
|
|
|
#ifndef NDEBUG
|
|
const int nb10 = src1->nb[0];
|
|
#endif
|
|
const int nb11 = src1->nb[1];
|
|
const int nb12 = src1->nb[2];
|
|
const int nb13 = src1->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
assert(ne02 == ne12);
|
|
assert(ne03 == ne13);
|
|
assert(ne2 == ne12);
|
|
assert(ne3 == ne13);
|
|
|
|
// we don't support permuted src0 or src1
|
|
assert(nb00 == sizeof(float));
|
|
assert(nb10 == sizeof(float));
|
|
|
|
// dst cannot be transposed or permuted
|
|
assert(nb0 == sizeof(float));
|
|
assert(nb0 <= nb1);
|
|
assert(nb1 <= nb2);
|
|
assert(nb2 <= nb3);
|
|
|
|
assert(ne0 == ne01);
|
|
assert(ne1 == ne11);
|
|
assert(ne2 == ne02);
|
|
assert(ne3 == ne03);
|
|
|
|
// nb01 >= nb00 - src0 is not transposed
|
|
// compute by src0 rows
|
|
|
|
#if defined(GGML_USE_CLBLAST)
|
|
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
|
|
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
|
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
|
if (params->ith != 0) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
|
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
|
|
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
|
ne11, ne01, ne10,
|
|
1.0f, y, ne10,
|
|
x, ne00,
|
|
0.0f, d, ne01);
|
|
}
|
|
}
|
|
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by src0 rows using ggml_vec_dot_f32
|
|
|
|
// total rows in src0
|
|
const int nr = ne01*ne02*ne03;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 indices
|
|
const int i03 = ir/(ne02*ne01);
|
|
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
|
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
for (int64_t ic = 0; ic < ne11; ++ic) {
|
|
// src1 indices
|
|
const int i13 = i03;
|
|
const int i12 = i02;
|
|
const int i11 = ic;
|
|
|
|
// dst indices
|
|
const int i0 = i01;
|
|
const int i1 = i11;
|
|
const int i2 = i02;
|
|
const int i3 = i03;
|
|
|
|
ggml_vec_dot_f32(ne00,
|
|
(float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
|
|
(float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
|
|
(float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
|
|
}
|
|
}
|
|
|
|
//int64_t t1 = ggml_perf_time_us();
|
|
//static int64_t acc = 0;
|
|
//acc += t1 - t0;
|
|
//if (t1 - t0 > 10) {
|
|
// printf("\n");
|
|
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
|
|
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
|
|
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
|
|
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
|
|
|
|
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
|
|
//}
|
|
}
|
|
|
|
static void ggml_compute_forward_mul_mat_f16_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
//const int64_t ne = ne0*ne1*ne2*ne3;
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
const int nb12 = src1->nb[2];
|
|
const int nb13 = src1->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
GGML_ASSERT(ne02 == ne12);
|
|
GGML_ASSERT(ne03 == ne13);
|
|
GGML_ASSERT(ne2 == ne12);
|
|
GGML_ASSERT(ne3 == ne13);
|
|
|
|
// TODO: we don't support permuted src0
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
GGML_ASSERT(ne0 == ne01);
|
|
GGML_ASSERT(ne1 == ne11);
|
|
GGML_ASSERT(ne2 == ne02);
|
|
GGML_ASSERT(ne3 == ne03);
|
|
|
|
// nb01 >= nb00 - src0 is not transposed
|
|
// compute by src0 rows
|
|
|
|
#if defined(GGML_USE_CLBLAST)
|
|
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
|
|
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
|
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
if (params->ith != 0) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
float * const wdata = params->wdata;
|
|
{
|
|
size_t id = 0;
|
|
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
|
for (int64_t i00 = 0; i00 < ne00; ++i00) {
|
|
wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
|
|
}
|
|
}
|
|
|
|
assert(id*sizeof(float) <= params->wsize);
|
|
}
|
|
|
|
const float * x = wdata;
|
|
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
|
|
// zT = y * xT
|
|
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
|
ne11, ne01, ne10,
|
|
1.0f, y, ne10,
|
|
x, ne00,
|
|
0.0f, d, ne01);
|
|
}
|
|
}
|
|
|
|
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
ggml_fp16_t * const wdata = params->wdata;
|
|
|
|
size_t id = 0;
|
|
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
|
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
|
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
|
wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
|
|
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// fp16 -> half the size, so divide by 2
|
|
// TODO: do not support transposed src1
|
|
assert(nb10/2 == sizeof(ggml_fp16_t));
|
|
|
|
// parallelize by src0 rows using ggml_vec_dot_f16
|
|
|
|
// total rows in src0
|
|
const int nr = ne01*ne02*ne03;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
ggml_fp16_t * wdata = params->wdata;
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 indices
|
|
const int i03 = ir/(ne02*ne01);
|
|
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
|
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
const int i13 = i03;
|
|
const int i12 = i02;
|
|
|
|
const int i0 = i01;
|
|
const int i2 = i02;
|
|
const int i3 = i03;
|
|
|
|
ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
|
ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
|
|
|
|
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
for (int64_t ic = 0; ic < ne11; ++ic) {
|
|
ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
|
|
}
|
|
}
|
|
|
|
//int64_t t1 = ggml_time_us();
|
|
//static int64_t acc = 0;
|
|
//acc += t1 - t0;
|
|
//if (t1 - t0 > 10) {
|
|
// printf("\n");
|
|
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
|
|
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
|
|
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
|
|
|
|
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
|
|
//}
|
|
}
|
|
|
|
static void ggml_compute_forward_mul_mat_q_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
const int nb12 = src1->nb[2];
|
|
const int nb13 = src1->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
GGML_ASSERT(ne02 == ne12);
|
|
GGML_ASSERT(ne03 == ne13);
|
|
GGML_ASSERT(ne2 == ne12);
|
|
GGML_ASSERT(ne3 == ne13);
|
|
|
|
const enum ggml_type type = src0->type;
|
|
quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
|
|
vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
|
|
enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
|
|
|
|
// we don't support permuted src0 or src1
|
|
GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
GGML_ASSERT(ne0 == ne01);
|
|
GGML_ASSERT(ne1 == ne11);
|
|
GGML_ASSERT(ne2 == ne02);
|
|
GGML_ASSERT(ne3 == ne03);
|
|
|
|
// nb01 >= nb00 - src0 is not transposed
|
|
// compute by src0 rows
|
|
|
|
#if defined(GGML_USE_CLBLAST)
|
|
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
|
|
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
|
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
|
if (params->ith != 0) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
float * const wdata = params->wdata;
|
|
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
|
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
|
|
{
|
|
size_t id = 0;
|
|
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
|
dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
|
|
id += ne00;
|
|
}
|
|
|
|
assert(id*sizeof(float) <= params->wsize);
|
|
}
|
|
|
|
const float * x = wdata;
|
|
|
|
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
|
ne11, ne01, ne10,
|
|
1.0f, y, ne10,
|
|
x, ne00,
|
|
0.0f, d, ne01);
|
|
}
|
|
}
|
|
|
|
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
char * wdata = params->wdata;
|
|
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
|
|
|
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
|
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
|
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
|
quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
|
|
wdata += row_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by src0 rows using ggml_vec_dot_q
|
|
|
|
// total rows in src0
|
|
const int nr = ne01*ne02*ne03;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
void * wdata = params->wdata;
|
|
const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 indices
|
|
const int i03 = ir/(ne02*ne01);
|
|
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
|
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
|
|
|
const int i13 = i03;
|
|
const int i12 = i02;
|
|
|
|
const int i0 = i01;
|
|
const int i2 = i02;
|
|
const int i3 = i03;
|
|
|
|
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
|
char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
|
|
|
|
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
assert(ne00 % 32 == 0);
|
|
|
|
for (int64_t ic = 0; ic < ne11; ++ic) {
|
|
vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
|
|
}
|
|
}
|
|
|
|
//int64_t t1 = ggml_time_us();
|
|
//static int64_t acc = 0;
|
|
//acc += t1 - t0;
|
|
//if (t1 - t0 > 10) {
|
|
// printf("\n");
|
|
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
|
|
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
|
|
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
|
|
|
|
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
|
|
//}
|
|
}
|
|
|
|
static void ggml_compute_forward_mul_mat(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_out_prod
|
|
|
|
|
|
static void ggml_compute_forward_out_prod_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
//const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
const int nb12 = src1->nb[2];
|
|
const int nb13 = src1->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
GGML_ASSERT(ne02 == ne12);
|
|
GGML_ASSERT(ne03 == ne13);
|
|
GGML_ASSERT(ne2 == ne12);
|
|
GGML_ASSERT(ne3 == ne13);
|
|
|
|
// we don't support permuted src0 or src1
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
// GGML_ASSERT(nb0 <= nb1);
|
|
// GGML_ASSERT(nb1 <= nb2);
|
|
// GGML_ASSERT(nb2 <= nb3);
|
|
|
|
GGML_ASSERT(ne0 == ne00);
|
|
GGML_ASSERT(ne1 == ne10);
|
|
GGML_ASSERT(ne2 == ne02);
|
|
GGML_ASSERT(ne3 == ne03);
|
|
|
|
// nb01 >= nb00 - src0 is not transposed
|
|
// compute by src0 rows
|
|
|
|
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
|
|
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by last three dimensions
|
|
|
|
// total rows in dst
|
|
const int64_t nr = ne1*ne2*ne3;
|
|
|
|
// rows per thread
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int64_t ir0 = dr*ith;
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
// dst[:,:,:,:] = 0
|
|
// for i2,i3:
|
|
// for i1:
|
|
// for i01:
|
|
// for i0:
|
|
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
|
|
|
|
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
|
// dst indices
|
|
const int64_t i3 = ir/(ne2*ne1);
|
|
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
|
|
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
|
|
|
const int64_t i02 = i2;
|
|
const int64_t i03 = i3;
|
|
|
|
//const int64_t i10 = i1;
|
|
const int64_t i12 = i2;
|
|
const int64_t i13 = i3;
|
|
|
|
for (int64_t i01 = 0; i01 < ne01; ++i01) {
|
|
const int64_t i11 = i01;
|
|
|
|
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
|
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
|
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
|
|
|
ggml_vec_mad_f32(ne0, d, s0, *s1);
|
|
// for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
|
// d[i0] += s0[i0] * s1[i1];
|
|
// }
|
|
}
|
|
}
|
|
|
|
//int64_t t1 = ggml_perf_time_us();
|
|
//static int64_t acc = 0;
|
|
//acc += t1 - t0;
|
|
//if (t1 - t0 > 10) {
|
|
// printf("\n");
|
|
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
|
|
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
|
|
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
|
|
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
|
|
|
|
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
|
|
//}
|
|
}
|
|
|
|
static void ggml_compute_forward_out_prod(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
{
|
|
GGML_ASSERT(false); // todo
|
|
// ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
GGML_ASSERT(false); // todo
|
|
// ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_scale
|
|
|
|
static void ggml_compute_forward_scale_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_scalar(src1));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// scale factor
|
|
const float v = *(float *) src1->data;
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
const size_t nb01 = src0->nb[1];
|
|
|
|
const size_t nb1 = dst->nb[1];
|
|
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
if (dst->data != src0->data) {
|
|
// src0 is same shape as dst => same indices
|
|
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
|
|
}
|
|
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_scale(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_scale_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_set
|
|
|
|
static void ggml_compute_forward_set_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
GGML_ASSERT(opt0->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_nelements(opt0) == 5);
|
|
|
|
// view src0 and dst with these strides and data offset inbytes during set
|
|
// nb0 is implicitely element_size because src0 and dst are contiguous
|
|
size_t nb1 = ((int32_t *) opt0->data)[0];
|
|
size_t nb2 = ((int32_t *) opt0->data)[1];
|
|
size_t nb3 = ((int32_t *) opt0->data)[2];
|
|
size_t offset = ((int32_t *) opt0->data)[3];
|
|
bool inplace = (bool) ((int32_t *) opt0->data)[4];
|
|
|
|
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
// => do it in INIT phase
|
|
memcpy(
|
|
((char *) dst->data),
|
|
((char *) src0->data),
|
|
ggml_nbytes(dst));
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(src1);
|
|
const int nc = src1->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const size_t nb10 = src1->nb[0];
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb12 = src1->nb[2];
|
|
const size_t nb13 = src1->nb[3];
|
|
|
|
// src0 and dst as viewed during set
|
|
const size_t nb0 = ggml_element_size(src0);
|
|
|
|
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
|
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
|
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
|
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
|
|
|
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
|
|
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// src0 and dst are viewed with shape of src1 and offset
|
|
// => same indices
|
|
const int i3 = ir/(ne12*ne11);
|
|
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
|
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
|
|
|
ggml_vec_cpy_f32(nc,
|
|
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
|
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_set(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_cpy
|
|
|
|
static void ggml_compute_forward_cpy(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
ggml_compute_forward_dup(params, src0, dst);
|
|
}
|
|
|
|
// ggml_compute_forward_cont
|
|
|
|
static void ggml_compute_forward_cont(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
ggml_compute_forward_dup(params, src0, dst);
|
|
}
|
|
|
|
// ggml_compute_forward_reshape
|
|
|
|
static void ggml_compute_forward_reshape(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
// NOP
|
|
UNUSED(params);
|
|
UNUSED(src0);
|
|
UNUSED(dst);
|
|
}
|
|
|
|
// ggml_compute_forward_view
|
|
|
|
static void ggml_compute_forward_view(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0) {
|
|
// NOP
|
|
UNUSED(params);
|
|
UNUSED(src0);
|
|
}
|
|
|
|
// ggml_compute_forward_permute
|
|
|
|
static void ggml_compute_forward_permute(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0) {
|
|
// NOP
|
|
UNUSED(params);
|
|
UNUSED(src0);
|
|
}
|
|
|
|
// ggml_compute_forward_transpose
|
|
|
|
static void ggml_compute_forward_transpose(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0) {
|
|
// NOP
|
|
UNUSED(params);
|
|
UNUSED(src0);
|
|
}
|
|
|
|
// ggml_compute_forward_get_rows
|
|
|
|
static void ggml_compute_forward_get_rows_q(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nelements(src1);
|
|
const enum ggml_type type = src0->type;
|
|
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
|
|
|
|
assert( dst->ne[0] == nc);
|
|
assert( dst->ne[1] == nr);
|
|
assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
dequantize_row_q(
|
|
(const void *) ((char *) src0->data + r*src0->nb[1]),
|
|
(float *) ((char *) dst->data + i*dst->nb[1]), nc);
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_get_rows_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nelements(src1);
|
|
|
|
assert( dst->ne[0] == nc);
|
|
assert( dst->ne[1] == nr);
|
|
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
for (int j = 0; j < nc; ++j) {
|
|
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
|
|
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_get_rows_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nelements(src1);
|
|
|
|
assert( dst->ne[0] == nc);
|
|
assert( dst->ne[1] == nr);
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
ggml_vec_cpy_f32(nc,
|
|
(float *) ((char *) dst->data + i*dst->nb[1]),
|
|
(float *) ((char *) src0->data + r*src0->nb[1]));
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_get_rows(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
//static bool first = true;
|
|
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
|
//if (first) {
|
|
// first = false;
|
|
//} else {
|
|
// for (int k = 0; k < dst->ne[1]; ++k) {
|
|
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
|
// for (int i = 0; i < 16; ++i) {
|
|
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
|
// }
|
|
// printf("\n");
|
|
// }
|
|
// printf("\n");
|
|
// }
|
|
// printf("\n");
|
|
// exit(0);
|
|
//}
|
|
}
|
|
|
|
// ggml_compute_forward_get_rows_back
|
|
|
|
static void ggml_compute_forward_get_rows_back_f32_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
GGML_ASSERT(ggml_are_same_shape(opt0, dst));
|
|
GGML_ASSERT(ggml_is_contiguous(opt0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nelements(src1);
|
|
|
|
GGML_ASSERT( dst->ne[0] == nc);
|
|
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
for (int j = 0; j < nc; ++j) {
|
|
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
|
|
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_get_rows_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
GGML_ASSERT(ggml_are_same_shape(opt0, dst));
|
|
GGML_ASSERT(ggml_is_contiguous(opt0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
memset(dst->data, 0, ggml_nbytes(dst));
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nelements(src1);
|
|
|
|
GGML_ASSERT( dst->ne[0] == nc);
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < nr; ++i) {
|
|
const int r = ((int32_t *) src1->data)[i];
|
|
|
|
ggml_vec_add_f32(nc,
|
|
(float *) ((char *) dst->data + r*dst->nb[1]),
|
|
(float *) ((char *) dst->data + r*dst->nb[1]),
|
|
(float *) ((char *) src0->data + i*src0->nb[1]));
|
|
}
|
|
}
|
|
|
|
|
|
static void ggml_compute_forward_get_rows_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
|
|
//static bool first = true;
|
|
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
|
//if (first) {
|
|
// first = false;
|
|
//} else {
|
|
// for (int k = 0; k < dst->ne[1]; ++k) {
|
|
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
|
// for (int i = 0; i < 16; ++i) {
|
|
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
|
// }
|
|
// printf("\n");
|
|
// }
|
|
// printf("\n");
|
|
// }
|
|
// printf("\n");
|
|
// exit(0);
|
|
//}
|
|
}
|
|
|
|
// ggml_compute_forward_diag
|
|
|
|
static void ggml_compute_forward_diag_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(params->ith == 0);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
const int ne00 = src0->ne[0];
|
|
const int ne01 = src0->ne[1];
|
|
const int ne02 = src0->ne[2];
|
|
const int ne03 = src0->ne[3];
|
|
const int ne0 = dst->ne[0];
|
|
const int ne1 = dst->ne[1];
|
|
const int ne2 = dst->ne[2];
|
|
const int ne3 = dst->ne[3];
|
|
GGML_ASSERT(ne00 == ne0);
|
|
GGML_ASSERT(ne00 == ne1);
|
|
GGML_ASSERT(ne01 == 1);
|
|
GGML_ASSERT(ne02 == ne2);
|
|
GGML_ASSERT(ne03 == ne3);
|
|
|
|
const int nb00 = src0->nb[0];
|
|
//const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
const int nb03 = src0->nb[3];
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
|
|
for (int i3 = 0; i3 < ne3; i3++) {
|
|
for (int i2 = 0; i2 < ne2; i2++) {
|
|
for (int i1 = 0; i1 < ne1; i1++) {
|
|
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
|
|
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
|
|
for (int i0 = 0; i0 < i1; i0++) {
|
|
d[i0] = 0;
|
|
}
|
|
d[i1] = s[i1];
|
|
for (int i0 = i1+1; i0 < ne0; i0++) {
|
|
d[i0] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_diag(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_diag_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_diag_mask_inf
|
|
|
|
static void ggml_compute_forward_diag_mask_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst,
|
|
const float value) {
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_nelements(src1) == 2);
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const bool inplace = (bool)((int32_t *) src1->data)[1];
|
|
|
|
GGML_ASSERT(n_past >= 0);
|
|
|
|
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
|
// memcpy needs to be synchronized across threads to avoid race conditions.
|
|
// => do it in INIT phase
|
|
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
memcpy(
|
|
((char *) dst->data),
|
|
((char *) src0->data),
|
|
ggml_nbytes(dst));
|
|
}
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
const int nr = src0->ne[1];
|
|
const int nz = n/nr;
|
|
|
|
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
|
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
|
|
|
for (int k = 0; k < nz; k++) {
|
|
for (int j = ith; j < nr; j += nth) {
|
|
for (int i = n_past; i < nc; i++) {
|
|
if (i > n_past + j) {
|
|
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_diag_mask_inf(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_diag_mask_zero(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_soft_max
|
|
|
|
static void ggml_compute_forward_soft_max_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
|
|
float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
assert(!isnan(sp[i]));
|
|
}
|
|
#endif
|
|
|
|
float max = -INFINITY;
|
|
ggml_vec_max_f32(nc, &max, sp);
|
|
|
|
ggml_float sum = 0.0;
|
|
|
|
uint16_t scvt;
|
|
for (int i = 0; i < nc; i++) {
|
|
if (sp[i] == -INFINITY) {
|
|
dp[i] = 0.0f;
|
|
} else {
|
|
// const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
|
|
ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
|
|
memcpy(&scvt, &s, sizeof(scvt));
|
|
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
|
|
sum += (ggml_float)val;
|
|
dp[i] = val;
|
|
}
|
|
}
|
|
|
|
assert(sum > 0.0);
|
|
|
|
sum = 1.0/sum;
|
|
ggml_vec_scale_f32(nc, dp, sum);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
assert(!isnan(dp[i]));
|
|
assert(!isinf(dp[i]));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_soft_max(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_soft_max_f32(params, src0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_soft_max_back
|
|
|
|
static void ggml_compute_forward_soft_max_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src1, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
|
|
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
|
|
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
assert(!isnan(dy[i]));
|
|
assert(!isnan(y[i]));
|
|
}
|
|
#endif
|
|
// Jii = yi - yi*yi
|
|
// Jij = -yi*yj
|
|
// J = diag(y)-y.T*y
|
|
// dx = J * dy
|
|
// dxk = sum_i(Jki * dyi)
|
|
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
|
|
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
|
|
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
|
|
// dxk = -yk * dot(y, dy) + yk*dyk
|
|
// dxk = yk * (- dot(y, dy) + dyk)
|
|
// dxk = yk * (dyk - dot(y, dy))
|
|
//
|
|
// post-order:
|
|
// dot_y_dy := dot(y, dy)
|
|
// dx := dy
|
|
// dx := dx - dot_y_dy
|
|
// dx := dx * y
|
|
|
|
// linear runtime, no additional memory
|
|
float dot_y_dy = 0;
|
|
ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
|
|
ggml_vec_cpy_f32 (nc, dx, dy);
|
|
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
|
|
ggml_vec_mul_f32 (nc, dx, dx, y);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
assert(!isnan(dx[i]));
|
|
assert(!isinf(dx[i]));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_soft_max_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_alibi
|
|
|
|
static void ggml_compute_forward_alibi_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 3);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_head = ((int32_t *) src1->data)[1];
|
|
const float max_bias = ((float *) src1->data)[2];
|
|
|
|
assert(n_past >= 0);
|
|
|
|
const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
|
|
const int ne1 = src0->ne[1]; // seq_len_without_past
|
|
//const int ne2 = src0->ne[2]; // n_head -> this is k
|
|
//const int ne3 = src0->ne[3]; // 1 -> bsz
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int ne2_ne3 = n/ne1; // ne2*ne3
|
|
|
|
const int nb0 = src0->nb[0];
|
|
const int nb1 = src0->nb[1];
|
|
const int nb2 = src0->nb[2];
|
|
//const int nb3 = src0->nb[3];
|
|
|
|
assert(nb0 == sizeof(float));
|
|
assert(ne1 + n_past == ne0); (void) n_past;
|
|
|
|
// add alibi to src0 (KQ_scaled)
|
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
for (int j = 0; j < ne1; j++) {
|
|
for (int k = 0; k < ne2_ne3; k++) {
|
|
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
|
|
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
|
|
|
|
// TODO: k*nb2 or k*nb3
|
|
|
|
float m_k;
|
|
|
|
if (k < n_heads_log2_floor) {
|
|
m_k = powf(m0, k + 1);
|
|
} else {
|
|
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
|
|
}
|
|
|
|
pdst[0] = (i-ne0+1) * m_k + src[0];
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_alibi_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 3);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_head = ((int32_t *) src1->data)[1];
|
|
const float max_bias = ((float *) src1->data)[2];
|
|
|
|
assert(n_past >= 0);
|
|
|
|
const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
|
|
const int ne1 = src0->ne[1]; // seq_len_without_past
|
|
//const int ne2 = src0->ne[2]; // n_head -> this is k
|
|
//const int ne3 = src0->ne[3]; // 1 -> bsz
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int ne2_ne3 = n/ne1; // ne2*ne3
|
|
|
|
const int nb0 = src0->nb[0];
|
|
const int nb1 = src0->nb[1];
|
|
const int nb2 = src0->nb[2];
|
|
//const int nb3 = src0->nb[3];
|
|
|
|
assert(nb0 == sizeof(ggml_fp16_t));
|
|
assert(ne1 + n_past == ne0); (void) n_past;
|
|
|
|
// add alibi to src0 (KQ_scaled)
|
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
|
|
|
for (int i = 0; i < ne0; i++) {
|
|
for (int j = 0; j < ne1; j++) {
|
|
for (int k = 0; k < ne2_ne3; k++) {
|
|
ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
|
|
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
|
|
|
|
// TODO: k*nb2 or k*nb3
|
|
|
|
float m_k;
|
|
|
|
if (k < n_heads_log2_floor) {
|
|
m_k = powf(m0, k + 1);
|
|
} else {
|
|
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
|
|
}
|
|
|
|
// we return F32
|
|
pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_alibi(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_alibi_f16(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_alibi_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_Q8_K:
|
|
case GGML_TYPE_I8:
|
|
case GGML_TYPE_I16:
|
|
case GGML_TYPE_I32:
|
|
case GGML_TYPE_COUNT:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
// ggml_compute_forward_clamp
|
|
|
|
static void ggml_compute_forward_clamp_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(params->ith == 0);
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 2);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int min = ((float *) src1->data)[0];
|
|
const int max = ((float *) src1->data)[1];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
|
|
GGML_ASSERT( nb0 == sizeof(float));
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
for (int j = ith; j < n; j += nth) {
|
|
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
|
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
|
|
|
for (int i = 0; i < nc; i++) {
|
|
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_clamp(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_clamp_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q8_1:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_Q8_K:
|
|
case GGML_TYPE_I8:
|
|
case GGML_TYPE_I16:
|
|
case GGML_TYPE_I32:
|
|
case GGML_TYPE_COUNT:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_rope
|
|
|
|
static void ggml_compute_forward_rope_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_nelements(src1) == 3);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
|
|
assert(n_past >= 0);
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
|
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(dst);
|
|
|
|
GGML_ASSERT(n_dims <= ne0);
|
|
GGML_ASSERT(n_dims % 2 == 0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
// row index used to determine which thread to use
|
|
int ir = 0;
|
|
|
|
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
|
|
|
const bool is_neox = mode & 2;
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
|
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
if (ir++ < ir0) continue;
|
|
if (ir > ir1) break;
|
|
|
|
float theta = (float)p;
|
|
|
|
if (!is_neox) {
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float x0 = src[0];
|
|
const float x1 = src[1];
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
} else {
|
|
// TODO: this is probably wrong, but I can't figure it out ..
|
|
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
|
|
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
|
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const int64_t i0 = ib*n_dims + ic/2;
|
|
|
|
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float x0 = src[0];
|
|
const float x1 = src[n_dims/2];
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rope_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_nelements(src1) == 3);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
|
|
assert(n_past >= 0);
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
|
|
|
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(dst);
|
|
|
|
GGML_ASSERT(n_dims <= ne0);
|
|
GGML_ASSERT(n_dims % 2 == 0);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
// row index used to determine which thread to use
|
|
int ir = 0;
|
|
|
|
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
|
|
|
const bool is_neox = mode & 2;
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
|
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
if (ir++ < ir0) continue;
|
|
if (ir > ir1) break;
|
|
|
|
float theta = (float)p;
|
|
|
|
if (!is_neox) {
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
|
const float x1 = GGML_FP16_TO_FP32(src[1]);
|
|
|
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
|
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
|
}
|
|
} else {
|
|
// TODO: this is probably wrong, but I can't figure it out ..
|
|
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
|
|
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
|
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const int64_t i0 = ib*n_dims + ic/2;
|
|
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
|
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
|
|
|
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
|
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rope(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_rope_f16(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_rope_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_rope_back
|
|
|
|
static void ggml_compute_forward_rope_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 3);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// y = rope(x, src1)
|
|
// dx = rope_back(dy, src1)
|
|
// src0 is dy, src1 contains options
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
|
|
assert(n_past >= 0);
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
|
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
|
|
|
assert(nb0 == sizeof(float));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(dst);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
// row index used to determine which thread to use
|
|
int ir = 0;
|
|
|
|
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
|
|
|
const bool is_neox = mode & 2;
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
|
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
if (ir++ < ir0) continue;
|
|
if (ir > ir1) break;
|
|
|
|
float theta = (float)p;
|
|
|
|
if (!is_neox) {
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float dy0 = dy[0];
|
|
const float dy1 = dy[1];
|
|
|
|
dx[0] = dy0*cos_theta + dy1*sin_theta;
|
|
dx[1] = - dy0*sin_theta + dy1*cos_theta;
|
|
}
|
|
} else {
|
|
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
|
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const int64_t i0 = ib*n_dims + ic/2;
|
|
|
|
const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float dy0 = dy[0];
|
|
const float dy1 = dy[n_dims/2];
|
|
|
|
dx[0] = dy0*cos_theta + dy1*sin_theta;
|
|
dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rope_back_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 3);
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// y = rope(x, src1)
|
|
// dx = rope_back(dy, src1)
|
|
// src0 is dy, src1 contains options
|
|
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
|
|
assert(n_past >= 0);
|
|
|
|
const size_t nb00 = src0->nb[0];
|
|
const size_t nb01 = src0->nb[1];
|
|
const size_t nb02 = src0->nb[2];
|
|
const size_t nb03 = src0->nb[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const size_t nb0 = dst->nb[0];
|
|
const size_t nb1 = dst->nb[1];
|
|
const size_t nb2 = dst->nb[2];
|
|
const size_t nb3 = dst->nb[3];
|
|
|
|
|
|
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
|
|
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
|
|
|
|
assert(nb0 == sizeof(ggml_fp16_t));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nr = ggml_nrows(dst);
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
// row index used to determine which thread to use
|
|
int ir = 0;
|
|
|
|
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
|
|
|
const bool is_neox = mode & 2;
|
|
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
|
|
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
|
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
|
if (ir++ < ir0) continue;
|
|
if (ir > ir1) break;
|
|
|
|
float theta = (float)p;
|
|
|
|
if (!is_neox) {
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float dy0 = GGML_FP16_TO_FP32(dy[0]);
|
|
const float dy1 = GGML_FP16_TO_FP32(dy[1]);
|
|
|
|
dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
|
|
dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
|
|
}
|
|
} else {
|
|
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
|
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
|
const float cos_theta = cosf(theta);
|
|
const float sin_theta = sinf(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const int64_t i0 = ib*n_dims + ic/2;
|
|
|
|
const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float dy0 = GGML_FP16_TO_FP32(dy[0]);
|
|
const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
|
|
|
|
dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
|
|
dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_rope_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_conv_1d_1s
|
|
|
|
static void ggml_compute_forward_conv_1d_1s_f16_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
//const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
//const int64_t ne12 = src1->ne[2];
|
|
//const int64_t ne13 = src1->ne[3];
|
|
|
|
//const int64_t ne0 = dst->ne[0];
|
|
//const int64_t ne1 = dst->ne[1];
|
|
//const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
//const int64_t ne = ne0*ne1*ne2*ne3;
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
//const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
//const int nb12 = src1->nb[2];
|
|
//const int nb13 = src1->nb[3];
|
|
|
|
//const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
//const int nb2 = dst->nb[2];
|
|
//const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nk = ne00;
|
|
const int nh = nk/2;
|
|
|
|
const int ew0 = ggml_up32(ne01);
|
|
|
|
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
// TODO: fix this memset (wsize is overestimated)
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
// prepare kernel data (src0)
|
|
{
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
|
|
ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
dst_data[i00*ew0 + i01] = src[i00];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepare source data (src1)
|
|
{
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
|
ggml_fp16_t * dst_data = wdata;
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// total rows in dst
|
|
const int nr = ne02;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
|
for (int64_t i0 = 0; i0 < ne10; ++i0) {
|
|
dst_data[i0] = 0;
|
|
for (int k = -nh; k <= nh; k++) {
|
|
float v = 0.0f;
|
|
ggml_vec_dot_f16(ew0, &v,
|
|
(ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
|
|
(ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
|
|
|
|
dst_data[i0] += v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_conv_1d_1s_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
//const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
//const int64_t ne12 = src1->ne[2];
|
|
//const int64_t ne13 = src1->ne[3];
|
|
|
|
//const int64_t ne0 = dst->ne[0];
|
|
//const int64_t ne1 = dst->ne[1];
|
|
//const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
//const int64_t ne = ne0*ne1*ne2*ne3;
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
//const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
//const int nb12 = src1->nb[2];
|
|
//const int nb13 = src1->nb[3];
|
|
|
|
//const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
//const int nb2 = dst->nb[2];
|
|
//const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nk = ne00;
|
|
const int nh = nk/2;
|
|
|
|
const int ew0 = ggml_up32(ne01);
|
|
|
|
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
// TODO: fix this memset (wsize is overestimated)
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
// prepare kernel data (src0)
|
|
{
|
|
float * const wdata = (float *) params->wdata + 0;
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
|
|
float * dst_data = wdata + i02*ew0*ne00;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
dst_data[i00*ew0 + i01] = src[i00];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepare source data (src1)
|
|
{
|
|
float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
|
float * dst_data = wdata;
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
dst_data[(i10 + nh)*ew0 + i11] = src[i10];
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// total rows in dst
|
|
const int nr = ne02;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
|
for (int64_t i0 = 0; i0 < ne10; ++i0) {
|
|
dst_data[i0] = 0;
|
|
for (int k = -nh; k <= nh; k++) {
|
|
float v = 0.0f;
|
|
ggml_vec_dot_f32(ew0, &v,
|
|
(float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
|
|
(float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
|
|
|
|
dst_data[i0] += v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_conv_1d_1s(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_conv_1d_2s
|
|
|
|
static void ggml_compute_forward_conv_1d_2s_f16_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
//const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
//const int64_t ne12 = src1->ne[2];
|
|
//const int64_t ne13 = src1->ne[3];
|
|
|
|
//const int64_t ne0 = dst->ne[0];
|
|
//const int64_t ne1 = dst->ne[1];
|
|
//const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
//const int64_t ne = ne0*ne1*ne2*ne3;
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
//const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
//const int nb12 = src1->nb[2];
|
|
//const int nb13 = src1->nb[3];
|
|
|
|
//const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
//const int nb2 = dst->nb[2];
|
|
//const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nk = ne00;
|
|
const int nh = nk/2;
|
|
|
|
const int ew0 = ggml_up32(ne01);
|
|
|
|
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
|
|
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
// TODO: fix this memset (wsize is overestimated)
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
// prepare kernel data (src0)
|
|
{
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
|
|
ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
dst_data[i00*ew0 + i01] = src[i00];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepare source data (src1)
|
|
{
|
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
|
ggml_fp16_t * dst_data = wdata;
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// total rows in dst
|
|
const int nr = ne02;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
|
for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
|
|
dst_data[i0/2] = 0;
|
|
for (int k = -nh; k <= nh; k++) {
|
|
float v = 0.0f;
|
|
ggml_vec_dot_f16(ew0, &v,
|
|
(ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
|
|
(ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
|
|
|
|
dst_data[i0/2] += v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_conv_1d_2s_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
//const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
//const int64_t ne12 = src1->ne[2];
|
|
//const int64_t ne13 = src1->ne[3];
|
|
|
|
//const int64_t ne0 = dst->ne[0];
|
|
//const int64_t ne1 = dst->ne[1];
|
|
//const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
//const int64_t ne = ne0*ne1*ne2*ne3;
|
|
|
|
const int nb00 = src0->nb[0];
|
|
const int nb01 = src0->nb[1];
|
|
const int nb02 = src0->nb[2];
|
|
//const int nb03 = src0->nb[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
//const int nb12 = src1->nb[2];
|
|
//const int nb13 = src1->nb[3];
|
|
|
|
//const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
//const int nb2 = dst->nb[2];
|
|
//const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int nk = ne00;
|
|
const int nh = nk/2;
|
|
|
|
const int ew0 = ggml_up32(ne01);
|
|
|
|
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
|
|
GGML_ASSERT(nb00 == sizeof(float));
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
// TODO: fix this memset (wsize is overestimated)
|
|
memset(params->wdata, 0, params->wsize);
|
|
|
|
// prepare kernel data (src0)
|
|
{
|
|
float * const wdata = (float *) params->wdata + 0;
|
|
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
|
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
|
|
float * dst_data = wdata + i02*ew0*ne00;
|
|
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
|
dst_data[i00*ew0 + i01] = src[i00];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepare source data (src1)
|
|
{
|
|
float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
|
|
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
const float * const src = (float *)((char *) src1->data + i11*nb11);
|
|
float * dst_data = wdata;
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
dst_data[(i10 + nh)*ew0 + i11] = src[i10];
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// total rows in dst
|
|
const int nr = ne02;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float * dst_data = (float *)((char *) dst->data + i1*nb1);
|
|
for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
|
|
dst_data[i0/2] = 0;
|
|
for (int k = -nh; k <= nh; k++) {
|
|
float v = 0.0f;
|
|
ggml_vec_dot_f32(ew0, &v,
|
|
(float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
|
|
(float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
|
|
|
|
dst_data[i0/2] += v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_conv_1d_2s(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_flash_attn
|
|
|
|
static void ggml_compute_forward_flash_attn_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * q,
|
|
const struct ggml_tensor * k,
|
|
const struct ggml_tensor * v,
|
|
const bool masked,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t neq0 = q->ne[0];
|
|
const int64_t neq1 = q->ne[1];
|
|
const int64_t neq2 = q->ne[2];
|
|
const int64_t neq3 = q->ne[3];
|
|
|
|
const int64_t nek0 = k->ne[0];
|
|
const int64_t nek1 = k->ne[1];
|
|
//const int64_t nek2 = k->ne[2];
|
|
//const int64_t nek3 = k->ne[3];
|
|
|
|
//const int64_t nev0 = v->ne[0];
|
|
const int64_t nev1 = v->ne[1];
|
|
//const int64_t nev2 = v->ne[2];
|
|
//const int64_t nev3 = v->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
//const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nbk0 = k->nb[0];
|
|
const int nbk1 = k->nb[1];
|
|
const int nbk2 = k->nb[2];
|
|
const int nbk3 = k->nb[3];
|
|
|
|
const int nbq0 = q->nb[0];
|
|
const int nbq1 = q->nb[1];
|
|
const int nbq2 = q->nb[2];
|
|
const int nbq3 = q->nb[3];
|
|
|
|
const int nbv0 = v->nb[0];
|
|
const int nbv1 = v->nb[1];
|
|
const int nbv2 = v->nb[2];
|
|
const int nbv3 = v->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t D = neq0;
|
|
const int64_t N = neq1;
|
|
const int64_t P = nek1 - N;
|
|
const int64_t M = P + N;
|
|
|
|
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
|
|
|
GGML_ASSERT(ne0 == D);
|
|
GGML_ASSERT(ne1 == N);
|
|
GGML_ASSERT(P >= 0);
|
|
|
|
GGML_ASSERT(nbq0 == sizeof(float));
|
|
GGML_ASSERT(nbk0 == sizeof(float));
|
|
GGML_ASSERT(nbv0 == sizeof(float));
|
|
|
|
GGML_ASSERT(neq0 == D);
|
|
GGML_ASSERT(nek0 == D);
|
|
GGML_ASSERT(nev1 == D);
|
|
|
|
GGML_ASSERT(neq1 == N);
|
|
GGML_ASSERT(nek1 == N + P);
|
|
GGML_ASSERT(nev1 == D);
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by q rows using ggml_vec_dot_f32
|
|
|
|
// total rows in q
|
|
const int nr = neq1*neq2*neq3;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
const float scale = 1.0f/sqrtf(D);
|
|
|
|
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// q indices
|
|
const int iq3 = ir/(neq2*neq1);
|
|
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
|
|
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
|
|
|
|
float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
|
|
|
|
for (int i = M; i < Mup; ++i) {
|
|
S[i] = -INFINITY;
|
|
}
|
|
|
|
for (int64_t ic = 0; ic < nek1; ++ic) {
|
|
// k indices
|
|
const int ik3 = iq3;
|
|
const int ik2 = iq2;
|
|
const int ik1 = ic;
|
|
|
|
// S indices
|
|
const int i1 = ik1;
|
|
|
|
ggml_vec_dot_f32(neq0,
|
|
S + i1,
|
|
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
|
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
|
|
}
|
|
|
|
// scale
|
|
ggml_vec_scale_f32(nek1, S, scale);
|
|
|
|
if (masked) {
|
|
for (int64_t i = P; i < M; i++) {
|
|
if (i > P + iq1) {
|
|
S[i] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// softmax
|
|
{
|
|
float max = -INFINITY;
|
|
ggml_vec_max_f32(M, &max, S);
|
|
|
|
ggml_float sum = 0.0;
|
|
{
|
|
#ifdef GGML_SOFT_MAX_ACCELERATE
|
|
max = -max;
|
|
vDSP_vsadd(S, 1, &max, S, 1, Mup);
|
|
vvexpf(S, S, &Mup);
|
|
ggml_vec_sum_f32(Mup, &sum, S);
|
|
#else
|
|
uint16_t scvt[GGML_SOFT_MAX_UNROLL];
|
|
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
|
|
|
|
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
|
|
float * SS = S + i;
|
|
|
|
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
|
|
if (SS[j] == -INFINITY) {
|
|
SS[j] = 0.0f;
|
|
} else {
|
|
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
|
|
memcpy(&scvt[j], &s, sizeof(uint16_t));
|
|
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
|
|
sump[j] += (ggml_float)val;
|
|
SS[j] = val;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
|
|
sum += sump[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
assert(sum > 0.0);
|
|
|
|
sum = 1.0/sum;
|
|
ggml_vec_scale_f32(M, S, sum);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < M; ++i) {
|
|
assert(!isnan(S[i]));
|
|
assert(!isinf(S[i]));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (int64_t ic = 0; ic < nev1; ++ic) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
ggml_vec_dot_f32(nek1,
|
|
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
|
|
(float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
|
|
S);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_flash_attn_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * q,
|
|
const struct ggml_tensor * k,
|
|
const struct ggml_tensor * v,
|
|
const bool masked,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t neq0 = q->ne[0];
|
|
const int64_t neq1 = q->ne[1];
|
|
const int64_t neq2 = q->ne[2];
|
|
const int64_t neq3 = q->ne[3];
|
|
|
|
const int64_t nek0 = k->ne[0];
|
|
const int64_t nek1 = k->ne[1];
|
|
//const int64_t nek2 = k->ne[2];
|
|
//const int64_t nek3 = k->ne[3];
|
|
|
|
//const int64_t nev0 = v->ne[0];
|
|
const int64_t nev1 = v->ne[1];
|
|
//const int64_t nev2 = v->ne[2];
|
|
//const int64_t nev3 = v->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
//const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nbk0 = k->nb[0];
|
|
const int nbk1 = k->nb[1];
|
|
const int nbk2 = k->nb[2];
|
|
const int nbk3 = k->nb[3];
|
|
|
|
const int nbq0 = q->nb[0];
|
|
const int nbq1 = q->nb[1];
|
|
const int nbq2 = q->nb[2];
|
|
const int nbq3 = q->nb[3];
|
|
|
|
const int nbv0 = v->nb[0];
|
|
const int nbv1 = v->nb[1];
|
|
const int nbv2 = v->nb[2];
|
|
const int nbv3 = v->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t D = neq0;
|
|
const int64_t N = neq1;
|
|
const int64_t P = nek1 - N;
|
|
const int64_t M = P + N;
|
|
|
|
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
|
|
|
GGML_ASSERT(ne0 == D);
|
|
GGML_ASSERT(ne1 == N);
|
|
GGML_ASSERT(P >= 0);
|
|
|
|
GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
|
|
|
|
GGML_ASSERT(neq0 == D);
|
|
GGML_ASSERT(nek0 == D);
|
|
GGML_ASSERT(nev1 == D);
|
|
|
|
GGML_ASSERT(neq1 == N);
|
|
GGML_ASSERT(nek1 == N + P);
|
|
GGML_ASSERT(nev1 == D);
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by q rows using ggml_vec_dot_f32
|
|
|
|
// total rows in q
|
|
const int nr = neq1*neq2*neq3;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
const float scale = 1.0f/sqrtf(D);
|
|
|
|
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// q indices
|
|
const int iq3 = ir/(neq2*neq1);
|
|
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
|
|
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
|
|
|
|
float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
|
|
|
|
for (int i = M; i < Mup; ++i) {
|
|
S[i] = -INFINITY;
|
|
}
|
|
|
|
if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
|
|
for (int64_t ic = 0; ic < nek1; ++ic) {
|
|
// k indices
|
|
const int ik3 = iq3;
|
|
const int ik2 = iq2;
|
|
const int ik1 = ic;
|
|
|
|
// S indices
|
|
const int i1 = ik1;
|
|
|
|
ggml_vec_dot_f16(neq0,
|
|
S + i1,
|
|
(ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
|
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
|
|
}
|
|
} else {
|
|
for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
|
|
// k indices
|
|
const int ik3 = iq3;
|
|
const int ik2 = iq2;
|
|
const int ik1 = ic;
|
|
|
|
// S indices
|
|
const int i1 = ik1;
|
|
|
|
ggml_vec_dot_f16_unroll(neq0, nbk1,
|
|
S + i1,
|
|
((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
|
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
|
|
}
|
|
}
|
|
|
|
// scale
|
|
ggml_vec_scale_f32(nek1, S, scale);
|
|
|
|
if (masked) {
|
|
for (int64_t i = P; i < M; i++) {
|
|
if (i > P + iq1) {
|
|
S[i] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// softmax
|
|
{
|
|
float max = -INFINITY;
|
|
ggml_vec_max_f32(M, &max, S);
|
|
|
|
ggml_float sum = 0.0;
|
|
{
|
|
#ifdef GGML_SOFT_MAX_ACCELERATE
|
|
max = -max;
|
|
vDSP_vsadd(S, 1, &max, S, 1, Mup);
|
|
vvexpf(S, S, &Mup);
|
|
ggml_vec_sum_f32(Mup, &sum, S);
|
|
#else
|
|
uint16_t scvt[GGML_SOFT_MAX_UNROLL];
|
|
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
|
|
|
|
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
|
|
float * SS = S + i;
|
|
|
|
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
|
|
if (SS[j] == -INFINITY) {
|
|
SS[j] = 0.0f;
|
|
} else {
|
|
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
|
|
memcpy(&scvt[j], &s, sizeof(uint16_t));
|
|
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
|
|
sump[j] += (ggml_float)val;
|
|
SS[j] = val;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
|
|
sum += sump[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
assert(sum > 0.0);
|
|
|
|
sum = 1.0/sum;
|
|
ggml_vec_scale_f32(M, S, sum);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < M; ++i) {
|
|
assert(!isnan(S[i]));
|
|
assert(!isinf(S[i]));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
|
|
|
|
for (int64_t i = 0; i < M; i++) {
|
|
S16[i] = GGML_FP32_TO_FP16(S[i]);
|
|
}
|
|
|
|
if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
|
|
for (int64_t ic = 0; ic < nev1; ++ic) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
ggml_vec_dot_f16(nek1,
|
|
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
|
|
(ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
|
|
S16);
|
|
}
|
|
} else {
|
|
for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
ggml_vec_dot_f16_unroll(nek1, nbv1,
|
|
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
|
|
((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
|
|
S16);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_flash_attn(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * q,
|
|
const struct ggml_tensor * k,
|
|
const struct ggml_tensor * v,
|
|
const bool masked,
|
|
struct ggml_tensor * dst) {
|
|
switch (q->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_flash_ff
|
|
|
|
static void ggml_compute_forward_flash_ff_f16(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * a, // F16
|
|
const struct ggml_tensor * b0, // F16 fc_w
|
|
const struct ggml_tensor * b1, // F32 fc_b
|
|
const struct ggml_tensor * c0, // F16 proj_w
|
|
const struct ggml_tensor * c1, // F32 proj_b
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t nea0 = a->ne[0];
|
|
const int64_t nea1 = a->ne[1];
|
|
const int64_t nea2 = a->ne[2];
|
|
const int64_t nea3 = a->ne[3];
|
|
|
|
const int64_t neb00 = b0->ne[0];
|
|
const int64_t neb01 = b0->ne[1];
|
|
//const int64_t neb02 = b0->ne[2];
|
|
//const int64_t neb03 = b0->ne[3];
|
|
|
|
const int64_t neb10 = b1->ne[0];
|
|
const int64_t neb11 = b1->ne[1];
|
|
//const int64_t neb12 = b1->ne[2];
|
|
//const int64_t neb13 = b1->ne[3];
|
|
|
|
const int64_t nec00 = c0->ne[0];
|
|
const int64_t nec01 = c0->ne[1];
|
|
//const int64_t nec02 = c0->ne[2];
|
|
//const int64_t nec03 = c0->ne[3];
|
|
|
|
const int64_t nec10 = c1->ne[0];
|
|
const int64_t nec11 = c1->ne[1];
|
|
//const int64_t nec12 = c1->ne[2];
|
|
//const int64_t nec13 = c1->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
//const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nba0 = a->nb[0];
|
|
const int nba1 = a->nb[1];
|
|
const int nba2 = a->nb[2];
|
|
const int nba3 = a->nb[3];
|
|
|
|
const int nbb00 = b0->nb[0];
|
|
const int nbb01 = b0->nb[1];
|
|
const int nbb02 = b0->nb[2];
|
|
const int nbb03 = b0->nb[3];
|
|
|
|
const int nbb10 = b1->nb[0];
|
|
//const int nbb11 = b1->nb[1];
|
|
//const int nbb12 = b1->nb[2];
|
|
//const int nbb13 = b1->nb[3];
|
|
|
|
const int nbc00 = c0->nb[0];
|
|
const int nbc01 = c0->nb[1];
|
|
const int nbc02 = c0->nb[2];
|
|
const int nbc03 = c0->nb[3];
|
|
|
|
const int nbc10 = c1->nb[0];
|
|
//const int nbc11 = c1->nb[1];
|
|
//const int nbc12 = c1->nb[2];
|
|
//const int nbc13 = c1->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t D = nea0;
|
|
//const int64_t N = nea1;
|
|
const int64_t M = neb01;
|
|
|
|
GGML_ASSERT(ne0 == nea0);
|
|
GGML_ASSERT(ne1 == nea1);
|
|
GGML_ASSERT(ne2 == nea2);
|
|
|
|
GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nbb10 == sizeof(float));
|
|
GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
|
|
GGML_ASSERT(nbc10 == sizeof(float));
|
|
|
|
GGML_ASSERT(neb00 == D);
|
|
GGML_ASSERT(neb01 == M);
|
|
GGML_ASSERT(neb10 == M);
|
|
GGML_ASSERT(neb11 == 1);
|
|
|
|
GGML_ASSERT(nec00 == M);
|
|
GGML_ASSERT(nec01 == D);
|
|
GGML_ASSERT(nec10 == D);
|
|
GGML_ASSERT(nec11 == 1);
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by a rows using ggml_vec_dot_f32
|
|
|
|
// total rows in a
|
|
const int nr = nea1*nea2*nea3;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// a indices
|
|
const int ia3 = ir/(nea2*nea1);
|
|
const int ia2 = (ir - ia3*nea2*nea1)/nea1;
|
|
const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
|
|
|
|
float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
|
|
|
|
for (int64_t ic = 0; ic < neb01; ++ic) {
|
|
// b0 indices
|
|
const int ib03 = ia3;
|
|
const int ib02 = ia2;
|
|
const int ib01 = ic;
|
|
|
|
// S indices
|
|
const int i1 = ib01;
|
|
|
|
ggml_vec_dot_f16(nea0,
|
|
S + i1,
|
|
(ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
|
|
(ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
|
|
}
|
|
|
|
ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
|
|
//ggml_vec_gelu_f32(neb01, S, S);
|
|
|
|
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
|
|
|
|
for (int64_t i = 0; i < M; i++) {
|
|
S16[i] = GGML_FP32_TO_FP16(S[i]);
|
|
}
|
|
|
|
ggml_vec_gelu_f16(neb01, S16, S16);
|
|
|
|
{
|
|
// dst indices
|
|
const int i1 = ia1;
|
|
const int i2 = ia2;
|
|
const int i3 = ia3;
|
|
|
|
for (int64_t ic = 0; ic < nec01; ++ic) {
|
|
|
|
ggml_vec_dot_f16(neb01,
|
|
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
|
|
(ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
|
|
S16);
|
|
}
|
|
|
|
ggml_vec_add_f32(nec01,
|
|
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
|
|
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
|
|
(float *) c1->data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_flash_ff(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * a,
|
|
const struct ggml_tensor * b0,
|
|
const struct ggml_tensor * b1,
|
|
const struct ggml_tensor * c0,
|
|
const struct ggml_tensor * c1,
|
|
struct ggml_tensor * dst) {
|
|
switch (b0->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(false); // TODO
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_flash_attn_back
|
|
|
|
static void ggml_compute_forward_flash_attn_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * q,
|
|
const struct ggml_tensor * k,
|
|
const struct ggml_tensor * v,
|
|
const struct ggml_tensor * d,
|
|
const bool masked,
|
|
struct ggml_tensor * dst) {
|
|
int64_t t0 = ggml_perf_time_us();
|
|
UNUSED(t0);
|
|
|
|
const int64_t neq0 = q->ne[0];
|
|
const int64_t neq1 = q->ne[1];
|
|
const int64_t neq2 = q->ne[2];
|
|
const int64_t neq3 = q->ne[3];
|
|
|
|
const int64_t nek0 = k->ne[0];
|
|
const int64_t nek1 = k->ne[1];
|
|
//const int64_t nek2 = k->ne[2];
|
|
//const int64_t nek3 = k->ne[3];
|
|
|
|
const int64_t nev0 = v->ne[0];
|
|
const int64_t nev1 = v->ne[1];
|
|
//const int64_t nev2 = v->ne[2];
|
|
//const int64_t nev3 = v->ne[3];
|
|
|
|
const int64_t ned0 = d->ne[0];
|
|
const int64_t ned1 = d->ne[1];
|
|
//const int64_t ned2 = d->ne[2];
|
|
//const int64_t ned3 = d->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
const int64_t ne2 = dst->ne[2];
|
|
const int64_t ne3 = dst->ne[3];
|
|
|
|
const int nbk0 = k->nb[0];
|
|
const int nbk1 = k->nb[1];
|
|
const int nbk2 = k->nb[2];
|
|
const int nbk3 = k->nb[3];
|
|
|
|
const int nbq0 = q->nb[0];
|
|
const int nbq1 = q->nb[1];
|
|
const int nbq2 = q->nb[2];
|
|
const int nbq3 = q->nb[3];
|
|
|
|
const int nbv0 = v->nb[0];
|
|
const int nbv1 = v->nb[1];
|
|
const int nbv2 = v->nb[2];
|
|
const int nbv3 = v->nb[3];
|
|
|
|
const int nbd0 = d->nb[0];
|
|
const int nbd1 = d->nb[1];
|
|
const int nbd2 = d->nb[2];
|
|
const int nbd3 = d->nb[3];
|
|
|
|
const int nb0 = dst->nb[0];
|
|
const int nb1 = dst->nb[1];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int64_t D = neq0;
|
|
const int64_t N = neq1;
|
|
const int64_t P = nek1 - N;
|
|
const int64_t M = P + N;
|
|
|
|
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
|
|
const int mxDM = MAX(D, Mup);
|
|
|
|
// GGML_ASSERT(ne0 == D);
|
|
// GGML_ASSERT(ne1 == N);
|
|
GGML_ASSERT(P >= 0);
|
|
|
|
GGML_ASSERT(nbq0 == sizeof(float));
|
|
GGML_ASSERT(nbk0 == sizeof(float));
|
|
GGML_ASSERT(nbv0 == sizeof(float));
|
|
|
|
GGML_ASSERT(neq0 == D);
|
|
GGML_ASSERT(nek0 == D);
|
|
GGML_ASSERT(nev1 == D);
|
|
GGML_ASSERT(ned0 == D);
|
|
|
|
GGML_ASSERT(neq1 == N);
|
|
GGML_ASSERT(nek1 == N + P);
|
|
GGML_ASSERT(nev1 == D);
|
|
GGML_ASSERT(ned1 == N);
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
if (ith == 0) {
|
|
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
// parallelize by q rows using ggml_vec_dot_f32
|
|
|
|
// total rows in q
|
|
const int nr = neq2*neq3;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
const float scale = 1.0f/sqrtf(D);
|
|
|
|
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
|
|
|
|
for (int ir = ir0; ir < ir1; ++ir) {
|
|
// q indices
|
|
const int iq3 = ir/(neq2);
|
|
const int iq2 = ir - iq3*neq2;
|
|
for ( int iq1 = 0; iq1 < neq1; ++iq1) {
|
|
|
|
|
|
// not sure about CACHE_LINE_SIZE_F32..
|
|
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
|
|
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
|
|
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
|
|
|
|
for (int i = M; i < Mup; ++i) {
|
|
S[i] = -INFINITY;
|
|
}
|
|
|
|
for (int64_t ic = 0; ic < nek1; ++ic) {
|
|
// k indices
|
|
const int ik3 = iq3;
|
|
const int ik2 = iq2;
|
|
const int ik1 = ic;
|
|
|
|
// S indices
|
|
const int i1 = ik1;
|
|
|
|
ggml_vec_dot_f32(neq0,
|
|
S + i1,
|
|
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
|
|
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
|
|
}
|
|
|
|
// scale
|
|
ggml_vec_scale_f32(nek1, S, scale);
|
|
|
|
if (masked) {
|
|
for (int64_t i = P; i < M; i++) {
|
|
if (i > P + iq1) {
|
|
S[i] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
|
|
// softmax
|
|
{
|
|
float max = -INFINITY;
|
|
ggml_vec_max_f32(M, &max, S);
|
|
|
|
ggml_float sum = 0.0;
|
|
{
|
|
#ifdef GGML_SOFT_MAX_ACCELERATE
|
|
max = -max;
|
|
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
|
|
vvexpf(SM, SM, &Mup);
|
|
ggml_vec_sum_f32(Mup, &sum, SM);
|
|
#else
|
|
uint16_t scvt[GGML_SOFT_MAX_UNROLL];
|
|
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
|
|
|
|
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
|
|
float * SR = S + i;
|
|
float * SW = SM + i;
|
|
|
|
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
|
|
if (SR[j] == -INFINITY) {
|
|
SW[j] = 0.0f;
|
|
} else {
|
|
ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
|
|
memcpy(&scvt[j], &s, sizeof(uint16_t));
|
|
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
|
|
sump[j] += (ggml_float)val;
|
|
SW[j] = val;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
|
|
sum += sump[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
assert(sum > 0.0);
|
|
|
|
sum = 1.0/sum;
|
|
ggml_vec_scale_f32(M, SM, sum);
|
|
|
|
}
|
|
|
|
// step-by-step explanation
|
|
{
|
|
// forward-process shape grads from backward process
|
|
// parallel_for iq2,iq3:
|
|
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
|
|
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
|
|
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
|
|
// for iq1:
|
|
// kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
|
|
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
|
|
// vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
|
|
// S0 = -Inf [D,1,1,1]
|
|
// ~S1[i] = dot(kcur[:D,i], qcur)
|
|
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
|
|
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
|
|
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
|
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
|
|
// ~S5[i] = dot(vcur[:,i], S4)
|
|
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
|
|
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
|
|
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
|
|
// dst backward-/ grad[dst] = d
|
|
//
|
|
// output gradients with their dependencies:
|
|
//
|
|
// grad[kcur] = grad[S1].T @ qcur
|
|
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
|
|
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
|
// grad[S4] = grad[S5] @ vcur
|
|
// grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
|
|
// grad[qcur] = grad[S1] @ kcur
|
|
// grad[vcur] = grad[S5].T @ S4
|
|
// grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
|
|
//
|
|
// in post-order:
|
|
//
|
|
// S1 = qcur @ kcur.T
|
|
// S2 = S1 * scale
|
|
// S3 = diag_mask_inf(S2, P)
|
|
// S4 = softmax(S3)
|
|
// grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
|
|
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
|
|
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
|
|
// grad[qcur] = grad[S1] @ kcur
|
|
// grad[kcur] = grad[S1].T @ qcur
|
|
// grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
|
|
//
|
|
// using less variables (SM=S4):
|
|
//
|
|
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
|
|
// SM = softmax(S)
|
|
// S = d[:D,iq1,iq2,iq3] @ vcur
|
|
// dot_SM_gradSM = dot(SM, S)
|
|
// S = SM * (S - dot(SM, S))
|
|
// S = diag_mask_zero(S, P) * scale
|
|
//
|
|
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
|
|
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
|
|
// grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
|
|
}
|
|
|
|
// S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
|
|
// S = d[:D,iq1,iq2,iq3] @ vcur
|
|
// S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
|
|
ggml_vec_set_f32(M, S, 0);
|
|
for (int64_t ic = 0; ic < D; ++ic) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
ggml_vec_mad_f32(M,
|
|
S,
|
|
(float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
|
|
*(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
|
|
}
|
|
|
|
// S = SM * (S - dot(SM, S))
|
|
float dot_SM_gradSM = 0;
|
|
ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
|
|
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
|
|
ggml_vec_mul_f32 (M, S, S, SM);
|
|
|
|
// S = diag_mask_zero(S, P) * scale
|
|
if (masked) {
|
|
// for (int64_t i = P + iq1 + 1; i < M; i++) {
|
|
// S[i] = 0;
|
|
// }
|
|
for (int64_t i = P; i < M; i++) {
|
|
if (i > P + iq1) {
|
|
S[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
ggml_vec_scale_f32(M, S, scale);
|
|
|
|
void * grad_q = (char *) dst->data;
|
|
void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
|
|
void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
|
|
|
|
const size_t nbgq1 = nb0*neq0;
|
|
const size_t nbgq2 = nb0*neq0*neq1;
|
|
const size_t nbgq3 = nb0*neq0*neq1*neq2;
|
|
|
|
const size_t nbgk1 = nb0*nek0;
|
|
const size_t nbgk2 = nb0*nek0*nek1;
|
|
const size_t nbgk3 = nb0*nek0*nek1*neq2;
|
|
|
|
const size_t nbgv1 = nb0*nev0;
|
|
const size_t nbgv2 = nb0*nev0*nev1;
|
|
const size_t nbgv3 = nb0*nev0*nev1*neq2;
|
|
|
|
// S shape [M,1]
|
|
// SM shape [M,1]
|
|
// kcur shape [D,M]
|
|
// qcur shape [D,1]
|
|
// vcur shape [M,D]
|
|
//
|
|
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
|
|
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
|
|
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
|
|
//
|
|
//// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
|
|
//// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
|
|
for (int64_t ic = 0; ic < M; ++ic) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
ggml_vec_mad_f32(D,
|
|
(float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
|
|
(float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
|
|
S[ic]);
|
|
}
|
|
|
|
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
|
|
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
|
|
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
|
|
for (int64_t ic = 0; ic < M; ++ic) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
// ggml_vec_set_f32(D,
|
|
// (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
|
|
// 0);
|
|
ggml_vec_mad_f32(D,
|
|
(float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
|
|
(float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
|
|
S[ic]);
|
|
}
|
|
|
|
// grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
|
|
// grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
|
|
// grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
|
|
for (int64_t ic = 0; ic < D; ++ic) {
|
|
// dst indices
|
|
const int i1 = iq1;
|
|
const int i2 = iq2;
|
|
const int i3 = iq3;
|
|
|
|
// ggml_vec_set_f32(M,
|
|
// (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
|
|
// 0);
|
|
ggml_vec_mad_f32(M,
|
|
(float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
|
|
SM,
|
|
*(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_flash_attn_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * q,
|
|
const struct ggml_tensor * k,
|
|
const struct ggml_tensor * v,
|
|
const struct ggml_tensor * d,
|
|
const bool masked,
|
|
struct ggml_tensor * dst) {
|
|
switch (q->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_map_unary
|
|
|
|
static void ggml_compute_forward_map_unary_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst,
|
|
const ggml_unary_op_f32_t fun) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert( dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
fun(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
|
}
|
|
}
|
|
|
|
|
|
static void ggml_compute_forward_map_unary(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
struct ggml_tensor * dst,
|
|
const ggml_unary_op_f32_t fun) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_map_binary
|
|
|
|
static void ggml_compute_forward_map_binary_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst,
|
|
const ggml_binary_op_f32_t fun) {
|
|
assert(params->ith == 0);
|
|
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const int n = ggml_nrows(src0);
|
|
const int nc = src0->ne[0];
|
|
|
|
assert( dst->nb[0] == sizeof(float));
|
|
assert(src0->nb[0] == sizeof(float));
|
|
assert(src1->nb[0] == sizeof(float));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
fun(nc,
|
|
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
|
(float *) ((char *) src0->data + i*(src0->nb[1])),
|
|
(float *) ((char *) src1->data + i*(src1->nb[1])));
|
|
}
|
|
}
|
|
|
|
|
|
static void ggml_compute_forward_map_binary(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst,
|
|
const ggml_binary_op_f32_t fun) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_cross_entropy_loss
|
|
|
|
static void ggml_compute_forward_cross_entropy_loss_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_scalar(dst));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
float * sums = (float *) params->wdata;
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
const int nc = src0->ne[0];
|
|
const int nr = ggml_nrows(src0);
|
|
|
|
if (params->type == GGML_TASK_INIT) {
|
|
if (ith == 0) {
|
|
memset(sums, 0, sizeof(float) * (nth + nth * nc));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (params->type == GGML_TASK_FINALIZE) {
|
|
if (ith == 0) {
|
|
float * dp = (float *) dst->data;
|
|
ggml_vec_sum_f32(nth, dp, sums);
|
|
dp[0] *= -1.0f;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const double eps = 1e-9;
|
|
|
|
// rows per thread
|
|
const int dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int ir0 = dr*ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int i1 = ir0; i1 < ir1; i1++) {
|
|
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
|
|
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
|
|
float * st = (float *) params->wdata + nth + ith*nc;
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
assert(!isnan(s0[i]));
|
|
assert(!isnan(s1[i]));
|
|
}
|
|
#endif
|
|
// soft_max
|
|
ggml_float sum = 0.0;
|
|
{
|
|
float max = -INFINITY;
|
|
ggml_vec_max_f32(nc, &max, s0);
|
|
|
|
uint16_t scvt;
|
|
for (int i = 0; i < nc; i++) {
|
|
if (s0[i] == -INFINITY) {
|
|
st[i] = 0.0f;
|
|
} else {
|
|
// const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
|
|
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
|
|
memcpy(&scvt, &s, sizeof(scvt));
|
|
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
|
|
sum += (ggml_float)val;
|
|
st[i] = val;
|
|
}
|
|
}
|
|
|
|
assert(sum > 0.0);
|
|
// sum = 1.0/sum;
|
|
}
|
|
// avoid log(0) by rescaling from [0..1] to [eps..1]
|
|
sum = (1.0 - eps) / sum;
|
|
ggml_vec_scale_f32(nc, st, sum);
|
|
ggml_vec_add1_f32(nc, st, st, eps);
|
|
ggml_vec_log_f32(nc, st, st);
|
|
ggml_vec_mul_f32(nc, st, st, s1);
|
|
|
|
ggml_vec_sum_f32(nc, sums + ith, st);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
assert(!isnan(st[i]));
|
|
assert(!isinf(st[i]));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
static void ggml_compute_forward_cross_entropy_loss(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// ggml_compute_forward_cross_entropy_loss_back
|
|
|
|
static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_contiguous(opt0));
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
|
|
|
const int64_t ith = params->ith;
|
|
const int64_t nth = params->nth;
|
|
|
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
|
return;
|
|
}
|
|
|
|
const float eps = 1e-9f;
|
|
|
|
// TODO: handle transposed/permuted matrices
|
|
const int64_t nc = src0->ne[0];
|
|
const int64_t nr = ggml_nrows(src0);
|
|
|
|
// rows per thread
|
|
const int64_t dr = (nr + nth - 1)/nth;
|
|
|
|
// row range for this thread
|
|
const int64_t ir0 = dr*ith;
|
|
const int64_t ir1 = MIN(ir0 + dr, nr);
|
|
|
|
float * d = (float *) opt0->data;
|
|
|
|
for (int64_t i1 = ir0; i1 < ir1; i1++) {
|
|
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
|
|
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
|
|
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
|
|
float * sm = (float *) params->wdata + ith*nc;
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
//printf("p[%d] = %f\n", i, p[i]);
|
|
assert(!isnan(s0[i]));
|
|
assert(!isnan(s1[i]));
|
|
}
|
|
#endif
|
|
// step by step explanation:
|
|
{
|
|
//float * sums = (float *) params->wdata;
|
|
|
|
// forward pass with annotated gradients from backward pass
|
|
// (built by going in reverse operation order, adding to gradients of current operation args)
|
|
// st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
|
|
// from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
|
|
// ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
|
|
// ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
|
|
// ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
|
|
// ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
|
|
// ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
|
|
// ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
|
|
|
|
// substitute into grad[st1], because we can reuse softmax_back from this point on
|
|
// grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
|
|
// postorder:
|
|
// grad[st1] := softmax(s0)
|
|
// grad[st1] := grad[st1]*(1.0 - eps)
|
|
// grad[st1] := grad[st1] + eps
|
|
// grad[st1] := s1 / grad[st1]
|
|
// grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
|
|
|
|
// src0 gradients by going through softmax_back
|
|
// grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
|
|
// from softmax_back:
|
|
// dxk = yk * (dyk - dot(y, dy))
|
|
// dot_y_dy := dot(y, dy)
|
|
// dx := dy
|
|
// dx := dx - dot_y_dy
|
|
// dx := dx * y
|
|
// postorder:
|
|
// dot_st1_dst1 := dot(st1, grad[st1])
|
|
// grad[s0] := grad[st1]
|
|
// grad[s0] := grad[s0] - dot_st1_dst1
|
|
// grad[s0] := grad[s0] * st1
|
|
|
|
// prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
|
|
// sm := softmax(s0)
|
|
// grad[s0] := sm*(1.0 - eps)
|
|
// grad[s0] := grad[s0] + eps
|
|
// grad[s0] := s1 / grad[s0]
|
|
// grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
|
|
// dot_st1_dst1 := dot(sm, grad[s0])
|
|
// grad[s0] := grad[s0] - dot_st1_dst1
|
|
// grad[s0] := grad[s0] * sm
|
|
}
|
|
|
|
// soft_max
|
|
ggml_float sum = 0.0;
|
|
{
|
|
float max = -INFINITY;
|
|
ggml_vec_max_f32(nc, &max, s0);
|
|
|
|
uint16_t scvt;
|
|
for (int i = 0; i < nc; i++) {
|
|
if (s0[i] == -INFINITY) {
|
|
sm[i] = 0.0f;
|
|
} else {
|
|
// const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
|
|
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
|
|
memcpy(&scvt, &s, sizeof(scvt));
|
|
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
|
|
sum += (ggml_float)val;
|
|
sm[i] = val;
|
|
}
|
|
}
|
|
|
|
assert(sum > 0.0);
|
|
sum = 1.0/sum;
|
|
}
|
|
|
|
float dot_st1_dst1 = 0;
|
|
ggml_vec_scale_f32(nc, sm, sum);
|
|
ggml_vec_cpy_f32 (nc, ds0, sm);
|
|
ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
|
|
ggml_vec_add1_f32 (nc, ds0, ds0, eps);
|
|
ggml_vec_div_f32 (nc, ds0, s1, ds0);
|
|
ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
|
|
ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
|
|
ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
|
|
ggml_vec_mul_f32 (nc, ds0, ds0, sm);
|
|
|
|
#ifndef NDEBUG
|
|
for (int i = 0; i < nc; ++i) {
|
|
assert(!isnan(sm[i]));
|
|
assert(!isinf(sm[i]));
|
|
assert(!isnan(ds0[i]));
|
|
assert(!isinf(ds0[i]));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_compute_forward_cross_entropy_loss_back(
|
|
const struct ggml_compute_params * params,
|
|
const struct ggml_tensor * src0,
|
|
const struct ggml_tensor * src1,
|
|
const struct ggml_tensor * opt0,
|
|
struct ggml_tensor * dst) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
|
|
/////////////////////////////////
|
|
|
|
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
|
GGML_ASSERT(params);
|
|
|
|
#ifdef GGML_USE_CUBLAS
|
|
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
|
|
if (skip_cpu) {
|
|
return;
|
|
}
|
|
GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
|
|
GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
|
|
#endif // GGML_USE_CUBLAS
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_DUP:
|
|
{
|
|
ggml_compute_forward_dup(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
{
|
|
ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_ADD1:
|
|
{
|
|
ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_ACC:
|
|
{
|
|
ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
|
|
} break;
|
|
case GGML_OP_SUB:
|
|
{
|
|
ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_MUL:
|
|
{
|
|
ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_DIV:
|
|
{
|
|
ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_SQR:
|
|
{
|
|
ggml_compute_forward_sqr(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SQRT:
|
|
{
|
|
ggml_compute_forward_sqrt(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_LOG:
|
|
{
|
|
ggml_compute_forward_log(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SUM:
|
|
{
|
|
ggml_compute_forward_sum(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SUM_ROWS:
|
|
{
|
|
ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_MEAN:
|
|
{
|
|
ggml_compute_forward_mean(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_REPEAT:
|
|
{
|
|
ggml_compute_forward_repeat(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_REPEAT_BACK:
|
|
{
|
|
ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_ABS:
|
|
{
|
|
ggml_compute_forward_abs(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SGN:
|
|
{
|
|
ggml_compute_forward_sgn(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_NEG:
|
|
{
|
|
ggml_compute_forward_neg(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_STEP:
|
|
{
|
|
ggml_compute_forward_step(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_RELU:
|
|
{
|
|
ggml_compute_forward_relu(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_GELU:
|
|
{
|
|
ggml_compute_forward_gelu(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SILU:
|
|
{
|
|
ggml_compute_forward_silu(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SILU_BACK:
|
|
{
|
|
ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_NORM:
|
|
{
|
|
ggml_compute_forward_norm(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_RMS_NORM:
|
|
{
|
|
ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_RMS_NORM_BACK:
|
|
{
|
|
ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_OUT_PROD:
|
|
{
|
|
ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_SCALE:
|
|
{
|
|
ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_SET:
|
|
{
|
|
ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
|
|
} break;
|
|
case GGML_OP_CPY:
|
|
{
|
|
ggml_compute_forward_cpy(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_CONT:
|
|
{
|
|
ggml_compute_forward_cont(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_RESHAPE:
|
|
{
|
|
ggml_compute_forward_reshape(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_VIEW:
|
|
{
|
|
ggml_compute_forward_view(params, tensor->src0);
|
|
} break;
|
|
case GGML_OP_PERMUTE:
|
|
{
|
|
ggml_compute_forward_permute(params, tensor->src0);
|
|
} break;
|
|
case GGML_OP_TRANSPOSE:
|
|
{
|
|
ggml_compute_forward_transpose(params, tensor->src0);
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_GET_ROWS_BACK:
|
|
{
|
|
ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
|
|
} break;
|
|
case GGML_OP_DIAG:
|
|
{
|
|
ggml_compute_forward_diag(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
{
|
|
ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_ZERO:
|
|
{
|
|
ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_SOFT_MAX:
|
|
{
|
|
ggml_compute_forward_soft_max(params, tensor->src0, tensor);
|
|
} break;
|
|
case GGML_OP_SOFT_MAX_BACK:
|
|
{
|
|
ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_ROPE:
|
|
{
|
|
ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_ROPE_BACK:
|
|
{
|
|
ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_ALIBI:
|
|
{
|
|
ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_CLAMP:
|
|
{
|
|
ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_CONV_1D_1S:
|
|
{
|
|
ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_CONV_1D_2S:
|
|
{
|
|
ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN:
|
|
{
|
|
int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
|
|
GGML_ASSERT(t == 0 || t == 1);
|
|
bool masked = t != 0;
|
|
ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
|
|
} break;
|
|
case GGML_OP_FLASH_FF:
|
|
{
|
|
ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN_BACK:
|
|
{
|
|
int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
|
|
GGML_ASSERT(t == 0 || t == 1);
|
|
bool masked = t != 0;
|
|
ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
|
|
} break;
|
|
case GGML_OP_MAP_UNARY:
|
|
{
|
|
const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
|
|
ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
|
|
}
|
|
break;
|
|
case GGML_OP_MAP_BINARY:
|
|
{
|
|
const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
|
|
ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
|
|
}
|
|
break;
|
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
|
{
|
|
ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
|
|
}
|
|
break;
|
|
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
|
{
|
|
ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
|
|
}
|
|
break;
|
|
case GGML_OP_NONE:
|
|
{
|
|
// nop
|
|
} break;
|
|
case GGML_OP_COUNT:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
|
|
struct ggml_tensor * src0 = tensor->src0;
|
|
struct ggml_tensor * src1 = tensor->src1;
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_DUP:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_ADD1:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad = ggml_add_impl(ctx,
|
|
src1->grad,
|
|
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_ACC:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
if (src1->grad) {
|
|
GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
|
|
GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
|
|
const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
|
|
const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
|
|
const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
|
|
const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
|
|
|
|
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
|
|
tensor->grad,
|
|
src1->grad->ne[0],
|
|
src1->grad->ne[1],
|
|
src1->grad->ne[2],
|
|
src1->grad->ne[3],
|
|
nb1, nb2, nb3, offset);
|
|
|
|
src1->grad =
|
|
ggml_add_impl(ctx,
|
|
src1->grad,
|
|
ggml_reshape(ctx,
|
|
ggml_cont(ctx, tensor_grad_view),
|
|
src1->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SUB:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_MUL:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_mul(ctx, src1, tensor->grad),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad =
|
|
ggml_add_impl(ctx,
|
|
src1->grad,
|
|
ggml_mul(ctx, src0, tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_DIV:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_div(ctx, tensor->grad, src1),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad =
|
|
ggml_sub_impl(ctx,
|
|
src1->grad,
|
|
ggml_mul(ctx,
|
|
tensor->grad,
|
|
ggml_div(ctx, tensor, src1)),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SQR:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_scale(ctx,
|
|
ggml_mul(ctx, src0, tensor->grad),
|
|
ggml_new_f32(ctx, 2.0f)),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SQRT:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_scale(ctx,
|
|
ggml_div(ctx,
|
|
tensor->grad,
|
|
tensor),
|
|
ggml_new_f32(ctx, 0.5f)),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_LOG:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_div(ctx,
|
|
tensor->grad,
|
|
src0),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SUM:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add1_impl(ctx,
|
|
src0->grad,
|
|
tensor->grad,
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SUM_ROWS:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_repeat(ctx,
|
|
tensor->grad,
|
|
src0->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_MEAN:
|
|
{
|
|
GGML_ASSERT(false); // TODO: implement
|
|
} break;
|
|
case GGML_OP_REPEAT:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_repeat_back(ctx, tensor->grad, src0->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_REPEAT_BACK:
|
|
{
|
|
if (src0->grad) {
|
|
// TODO: test this
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_repeat(ctx, tensor->grad, src0->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_ABS:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_mul(ctx,
|
|
ggml_sgn(ctx, src0),
|
|
tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SGN:
|
|
{
|
|
if (src0->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_NEG:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_STEP:
|
|
{
|
|
if (src0->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_RELU:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_sub_impl(ctx,
|
|
src0->grad,
|
|
ggml_mul(ctx,
|
|
ggml_step(ctx, src0),
|
|
tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_GELU:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_ALIBI:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_CLAMP:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_SILU:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_silu_back(ctx, src0, tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SILU_BACK:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_NORM:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_RMS_NORM:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_rms_norm_back(ctx, src0, tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_RMS_NORM_BACK:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
// https://cs231n.github.io/optimization-2/#staged
|
|
// # forward pass
|
|
// s0 = np.random.randn(5, 10)
|
|
// s1 = np.random.randn(10, 3)
|
|
// t = s0.dot(s1)
|
|
|
|
// # now suppose we had the gradient on t from above in the circuit
|
|
// dt = np.random.randn(*t.shape) # same shape as t
|
|
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
|
|
// ds1 = t.T.dot(dt)
|
|
|
|
// tensor.shape [m,p]
|
|
// src0.shape [n,m]
|
|
// src1.shape [n,p]
|
|
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_out_prod(ctx, // [n,m]
|
|
src1, // [n,p]
|
|
tensor->grad), // [m,p]
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad =
|
|
ggml_add_impl(ctx,
|
|
src1->grad,
|
|
// ggml_mul_mat(ctx, // [n,p]
|
|
// ggml_cont(ctx, // [m,n]
|
|
// ggml_transpose(ctx, src0)), // [m,n]
|
|
// tensor->grad), // [m,p]
|
|
|
|
// // when src0 is bigger than tensor->grad (this is mostly the case in llama),
|
|
// // avoid transpose of src0, rather transpose smaller tensor->grad
|
|
// // and then use ggml_out_prod
|
|
ggml_out_prod(ctx, // [n,p]
|
|
src0, // [n,m]
|
|
ggml_transpose(ctx, // [p,m]
|
|
tensor->grad)), // [m,p]
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_OUT_PROD:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_SCALE:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_scale_impl(ctx, tensor->grad, src1, false),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
src1->grad =
|
|
ggml_add_impl(ctx,
|
|
src1->grad,
|
|
ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_SET:
|
|
{
|
|
GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
|
|
GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
|
|
const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
|
|
const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
|
|
const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
|
|
const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
|
|
|
|
struct ggml_tensor * tensor_grad_view = NULL;
|
|
|
|
if (src0->grad || src1->grad) {
|
|
GGML_ASSERT(src0->type == tensor->type);
|
|
GGML_ASSERT(tensor->grad->type == tensor->type);
|
|
GGML_ASSERT(tensor->grad->type == src1->grad->type);
|
|
|
|
tensor_grad_view = ggml_view_4d(ctx,
|
|
tensor->grad,
|
|
src1->grad->ne[0],
|
|
src1->grad->ne[1],
|
|
src1->grad->ne[2],
|
|
src1->grad->ne[3],
|
|
nb1, nb2, nb3, offset);
|
|
}
|
|
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_acc_impl(ctx,
|
|
tensor->grad,
|
|
ggml_neg(ctx, tensor_grad_view),
|
|
nb1, nb2, nb3, offset, false),
|
|
inplace);
|
|
}
|
|
|
|
if (src1->grad) {
|
|
src1->grad =
|
|
ggml_add_impl(ctx,
|
|
src1->grad,
|
|
ggml_reshape(ctx,
|
|
ggml_cont(ctx, tensor_grad_view),
|
|
src1->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_CPY:
|
|
{
|
|
// necessary for llama
|
|
// cpy overwrites value of src1 by src0 and returns view(src1)
|
|
// the overwriting is mathematically equivalent to:
|
|
// tensor = src0 * 1 + src1 * 0
|
|
if (src0->grad) {
|
|
// dsrc0 = dtensor * 1
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
if (src1->grad) {
|
|
// dsrc1 = dtensor * 0 -> noop
|
|
}
|
|
} break;
|
|
case GGML_OP_CONT:
|
|
{
|
|
// same as cpy
|
|
if (src0->grad) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0->grad));
|
|
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
|
|
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_RESHAPE:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_reshape(ctx, tensor->grad, src0->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_VIEW:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
size_t offset;
|
|
|
|
GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
|
|
memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
|
|
|
|
size_t nb1 = tensor->nb[1];
|
|
size_t nb2 = tensor->nb[2];
|
|
size_t nb3 = tensor->nb[3];
|
|
|
|
if (src0->type != src0->grad->type) {
|
|
// gradient is typically F32, but src0 could be other type
|
|
size_t ng = ggml_element_size(src0->grad);
|
|
size_t n0 = ggml_element_size(src0);
|
|
GGML_ASSERT(offset % n0 == 0);
|
|
GGML_ASSERT(nb1 % n0 == 0);
|
|
GGML_ASSERT(nb2 % n0 == 0);
|
|
GGML_ASSERT(nb3 % n0 == 0);
|
|
offset = (offset / n0) * ng;
|
|
nb1 = (nb1 / n0) * ng;
|
|
nb2 = (nb2 / n0) * ng;
|
|
nb3 = (nb3 / n0) * ng;
|
|
}
|
|
|
|
src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_PERMUTE:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
int32_t * axes = (int32_t *) tensor->opt[0]->data;
|
|
int axis0 = axes[0] & 0x3;
|
|
int axis1 = axes[1] & 0x3;
|
|
int axis2 = axes[2] & 0x3;
|
|
int axis3 = axes[3] & 0x3;
|
|
int axes_backward[4] = {0,0,0,0};
|
|
axes_backward[axis0] = 0;
|
|
axes_backward[axis1] = 1;
|
|
axes_backward[axis2] = 2;
|
|
axes_backward[axis3] = 3;
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_permute(ctx,
|
|
tensor->grad,
|
|
axes_backward[0],
|
|
axes_backward[1],
|
|
axes_backward[2],
|
|
axes_backward[3]),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_TRANSPOSE:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_transpose(ctx, tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
// necessary for llama (only for tokenizer)
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_GET_ROWS_BACK:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_DIAG:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 2);
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_ZERO:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 2);
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_SOFT_MAX:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
src0->grad =
|
|
ggml_add_impl(ctx, src0->grad,
|
|
ggml_soft_max_back(ctx, tensor->grad, tensor),
|
|
inplace);
|
|
}
|
|
|
|
} break;
|
|
case GGML_OP_SOFT_MAX_BACK:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_ROPE:
|
|
{
|
|
// necessary for llama
|
|
if (src0->grad) {
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 3);
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_rope_back(ctx,
|
|
tensor->grad,
|
|
n_past,
|
|
n_dims,
|
|
mode),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_ROPE_BACK:
|
|
{
|
|
if (src0->grad) {
|
|
assert(src1->type == GGML_TYPE_I32);
|
|
assert(ggml_nelements(src1) == 3);
|
|
const int n_past = ((int32_t *) src1->data)[0];
|
|
const int n_dims = ((int32_t *) src1->data)[1];
|
|
const int mode = ((int32_t *) src1->data)[2];
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_rope(ctx,
|
|
tensor->grad,
|
|
n_past,
|
|
n_dims,
|
|
mode),
|
|
inplace);
|
|
}
|
|
if (src1->grad) {
|
|
// noop
|
|
}
|
|
} break;
|
|
case GGML_OP_CONV_1D_1S:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_CONV_1D_2S:
|
|
{
|
|
GGML_ASSERT(false); // TODO: not implemented
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN:
|
|
{
|
|
struct ggml_tensor * flash_grad = NULL;
|
|
if (src0->grad || src1->grad || tensor->opt[0]->grad) {
|
|
int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
|
|
GGML_ASSERT(t == 0 || t == 1);
|
|
bool masked = t != 0;
|
|
flash_grad =
|
|
ggml_flash_attn_back(ctx,
|
|
src0,
|
|
src1,
|
|
tensor->opt[0],
|
|
tensor->grad,
|
|
masked);
|
|
}
|
|
|
|
if (src0->grad) {
|
|
struct ggml_tensor * grad_q = NULL;
|
|
const size_t nb0 = flash_grad->nb[0];
|
|
const size_t offset = 0;
|
|
switch(src0->n_dims) {
|
|
case 2:
|
|
{
|
|
grad_q = ggml_view_2d(ctx,
|
|
flash_grad,
|
|
src0->ne[0],
|
|
src0->ne[1],
|
|
nb0*src0->ne[0],
|
|
offset);
|
|
} break;
|
|
case 3:
|
|
{
|
|
grad_q = ggml_view_3d(ctx,
|
|
flash_grad,
|
|
src0->ne[0],
|
|
src0->ne[1],
|
|
src0->ne[2],
|
|
nb0*src0->ne[0],
|
|
nb0*src0->ne[0]*src0->ne[1],
|
|
offset);
|
|
} break;
|
|
case 4:
|
|
{
|
|
grad_q = ggml_view_4d(ctx,
|
|
flash_grad,
|
|
src0->ne[0],
|
|
src0->ne[1],
|
|
src0->ne[2],
|
|
src0->ne[3],
|
|
nb0*src0->ne[0],
|
|
nb0*src0->ne[0]*src0->ne[1],
|
|
nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
|
|
offset);
|
|
} break;
|
|
}
|
|
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
grad_q,
|
|
inplace);
|
|
}
|
|
|
|
if (src1->grad) {
|
|
struct ggml_tensor * grad_k = NULL;
|
|
const size_t nb0 = flash_grad->nb[0];
|
|
const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
|
|
switch(src1->n_dims) {
|
|
case 2:
|
|
{
|
|
grad_k = ggml_view_2d(ctx,
|
|
flash_grad,
|
|
src1->ne[0],
|
|
src1->ne[1],
|
|
nb0*src1->ne[0],
|
|
offset);
|
|
} break;
|
|
case 3:
|
|
{
|
|
grad_k = ggml_view_3d(ctx,
|
|
flash_grad,
|
|
src1->ne[0],
|
|
src1->ne[1],
|
|
src1->ne[2],
|
|
nb0*src1->ne[0],
|
|
nb0*src1->ne[0]*src1->ne[1],
|
|
offset);
|
|
} break;
|
|
case 4:
|
|
{
|
|
grad_k = ggml_view_4d(ctx,
|
|
flash_grad,
|
|
src1->ne[0],
|
|
src1->ne[1],
|
|
src1->ne[2],
|
|
src1->ne[3],
|
|
nb0*src1->ne[0],
|
|
nb0*src1->ne[0]*src1->ne[1],
|
|
nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
|
|
offset);
|
|
} break;
|
|
}
|
|
|
|
src1->grad = ggml_add_impl(ctx,
|
|
src1->grad,
|
|
grad_k,
|
|
inplace);
|
|
}
|
|
|
|
struct ggml_tensor * opt0 = tensor->opt[0];
|
|
|
|
if (opt0->grad) {
|
|
struct ggml_tensor * grad_v = NULL;
|
|
const size_t nb0 = flash_grad->nb[0];
|
|
const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
|
|
+ nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
|
|
switch(opt0->n_dims) {
|
|
case 2:
|
|
{
|
|
grad_v = ggml_view_2d(ctx,
|
|
flash_grad,
|
|
opt0->ne[0],
|
|
opt0->ne[1],
|
|
nb0*opt0->ne[0],
|
|
offset);
|
|
} break;
|
|
case 3:
|
|
{
|
|
grad_v = ggml_view_3d(ctx,
|
|
flash_grad,
|
|
opt0->ne[0],
|
|
opt0->ne[1],
|
|
opt0->ne[2],
|
|
nb0*opt0->ne[0],
|
|
nb0*opt0->ne[0]*opt0->ne[1],
|
|
offset);
|
|
} break;
|
|
case 4:
|
|
{
|
|
grad_v = ggml_view_4d(ctx,
|
|
flash_grad,
|
|
opt0->ne[0],
|
|
opt0->ne[1],
|
|
opt0->ne[2],
|
|
opt0->ne[3],
|
|
nb0*opt0->ne[0],
|
|
nb0*opt0->ne[0]*opt0->ne[1],
|
|
nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
|
|
offset);
|
|
} break;
|
|
}
|
|
|
|
opt0->grad = ggml_add_impl(ctx,
|
|
opt0->grad,
|
|
grad_v,
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_FLASH_FF:
|
|
{
|
|
GGML_ASSERT(false); // not supported
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN_BACK:
|
|
{
|
|
GGML_ASSERT(false); // not supported
|
|
} break;
|
|
case GGML_OP_MAP_UNARY:
|
|
case GGML_OP_MAP_BINARY:
|
|
{
|
|
GGML_ASSERT(false); // not supported
|
|
} break;
|
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
|
{
|
|
if (src0->grad) {
|
|
src0->grad = ggml_add_impl(ctx,
|
|
src0->grad,
|
|
ggml_cross_entropy_loss_back(ctx,
|
|
src0,
|
|
src1,
|
|
tensor->grad),
|
|
inplace);
|
|
}
|
|
} break;
|
|
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
|
{
|
|
GGML_ASSERT(false); // not supported
|
|
} break;
|
|
case GGML_OP_NONE:
|
|
{
|
|
// nop
|
|
} break;
|
|
case GGML_OP_COUNT:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
|
|
if (node->grad == NULL) {
|
|
// this usually happens when we generate intermediate nodes from constants in the backward pass
|
|
// it can also happen during forward pass, if the user performs computations with constants
|
|
if (node->op != GGML_OP_NONE) {
|
|
//GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
|
|
}
|
|
}
|
|
|
|
// check if already visited
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
if (cgraph->nodes[i] == node) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < cgraph->n_leafs; i++) {
|
|
if (cgraph->leafs[i] == node) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (node->src0) {
|
|
ggml_visit_parents(cgraph, node->src0);
|
|
}
|
|
|
|
if (node->src1) {
|
|
ggml_visit_parents(cgraph, node->src1);
|
|
}
|
|
|
|
for (int i = 0; i < GGML_MAX_OPT; ++i) {
|
|
if (node->opt[i]) {
|
|
ggml_visit_parents(cgraph, node->opt[i]);
|
|
}
|
|
}
|
|
|
|
if (node->op == GGML_OP_NONE && node->grad == NULL) {
|
|
// reached a leaf node, not part of the gradient graph (e.g. a constant)
|
|
GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
|
|
|
|
if (strlen(node->name) == 0) {
|
|
snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
|
|
}
|
|
|
|
cgraph->leafs[cgraph->n_leafs] = node;
|
|
cgraph->n_leafs++;
|
|
} else {
|
|
GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
|
|
|
|
if (strlen(node->name) == 0) {
|
|
snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
|
|
}
|
|
|
|
cgraph->nodes[cgraph->n_nodes] = node;
|
|
cgraph->grads[cgraph->n_nodes] = node->grad;
|
|
cgraph->n_nodes++;
|
|
}
|
|
}
|
|
|
|
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
|
|
if (!expand) {
|
|
cgraph->n_nodes = 0;
|
|
cgraph->n_leafs = 0;
|
|
}
|
|
|
|
const int n0 = cgraph->n_nodes;
|
|
UNUSED(n0);
|
|
|
|
ggml_visit_parents(cgraph, tensor);
|
|
|
|
const int n_new = cgraph->n_nodes - n0;
|
|
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
|
|
|
|
if (n_new > 0) {
|
|
// the last added node should always be starting point
|
|
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
|
|
}
|
|
}
|
|
|
|
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
|
|
ggml_build_forward_impl(cgraph, tensor, true);
|
|
}
|
|
|
|
struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
|
|
struct ggml_cgraph result = {
|
|
/*.n_nodes =*/ 0,
|
|
/*.n_leafs =*/ 0,
|
|
/*.n_threads =*/ GGML_DEFAULT_N_THREADS,
|
|
/*.work_size =*/ 0,
|
|
/*.work =*/ NULL,
|
|
/*.nodes =*/ { NULL },
|
|
/*.grads =*/ { NULL },
|
|
/*.leafs =*/ { NULL },
|
|
/*.perf_runs =*/ 0,
|
|
/*.perf_cycles =*/ 0,
|
|
/*.perf_time_us =*/ 0,
|
|
};
|
|
|
|
ggml_build_forward_impl(&result, tensor, false);
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
|
|
struct ggml_cgraph result = *gf;
|
|
|
|
GGML_ASSERT(gf->n_nodes > 0);
|
|
|
|
// if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
|
|
if (keep) {
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
if (node->grad) {
|
|
node->grad = ggml_dup_tensor(ctx, node);
|
|
gf->grads[i] = node->grad;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = gf->n_nodes - 1; i >= 0; i--) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
// because we detached the grad nodes from the original graph, we can afford inplace operations
|
|
if (node->grad) {
|
|
ggml_compute_backward(ctx, node, keep);
|
|
}
|
|
}
|
|
|
|
for (int i = gf->n_nodes - 1; i >= 0; i--) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
if (node->is_param) {
|
|
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
|
|
ggml_build_forward_impl(&result, node->grad, true);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// thread data
|
|
//
|
|
// synchronization is done via busy loops
|
|
// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
|
|
//
|
|
|
|
#ifdef __APPLE__
|
|
|
|
//#include <os/lock.h>
|
|
//
|
|
//typedef os_unfair_lock ggml_lock_t;
|
|
//
|
|
//#define ggml_lock_init(x) UNUSED(x)
|
|
//#define ggml_lock_destroy(x) UNUSED(x)
|
|
//#define ggml_lock_lock os_unfair_lock_lock
|
|
//#define ggml_lock_unlock os_unfair_lock_unlock
|
|
//
|
|
//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
|
|
|
|
typedef int ggml_lock_t;
|
|
|
|
#define ggml_lock_init(x) UNUSED(x)
|
|
#define ggml_lock_destroy(x) UNUSED(x)
|
|
#define ggml_lock_lock(x) UNUSED(x)
|
|
#define ggml_lock_unlock(x) UNUSED(x)
|
|
|
|
#define GGML_LOCK_INITIALIZER 0
|
|
|
|
typedef pthread_t ggml_thread_t;
|
|
|
|
#define ggml_thread_create pthread_create
|
|
#define ggml_thread_join pthread_join
|
|
|
|
#else
|
|
|
|
//typedef pthread_spinlock_t ggml_lock_t;
|
|
|
|
//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
|
|
//#define ggml_lock_destroy pthread_spin_destroy
|
|
//#define ggml_lock_lock pthread_spin_lock
|
|
//#define ggml_lock_unlock pthread_spin_unlock
|
|
|
|
typedef int ggml_lock_t;
|
|
|
|
#define ggml_lock_init(x) UNUSED(x)
|
|
#define ggml_lock_destroy(x) UNUSED(x)
|
|
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
|
|
#define ggml_lock_lock(x) _mm_pause()
|
|
#else
|
|
#define ggml_lock_lock(x) UNUSED(x)
|
|
#endif
|
|
#define ggml_lock_unlock(x) UNUSED(x)
|
|
|
|
#define GGML_LOCK_INITIALIZER 0
|
|
|
|
typedef pthread_t ggml_thread_t;
|
|
|
|
#define ggml_thread_create pthread_create
|
|
#define ggml_thread_join pthread_join
|
|
|
|
#endif
|
|
|
|
struct ggml_compute_state_shared {
|
|
ggml_lock_t spin;
|
|
|
|
int n_threads;
|
|
|
|
// synchronization primitives
|
|
atomic_int n_ready;
|
|
atomic_bool has_work;
|
|
atomic_bool stop; // stop all threads
|
|
};
|
|
|
|
struct ggml_compute_state {
|
|
ggml_thread_t thrd;
|
|
|
|
struct ggml_compute_params params;
|
|
struct ggml_tensor * node;
|
|
|
|
struct ggml_compute_state_shared * shared;
|
|
};
|
|
|
|
static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
|
|
|
|
const int n_threads = state->shared->n_threads;
|
|
|
|
while (true) {
|
|
if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
|
|
atomic_store(&state->shared->has_work, false);
|
|
} else {
|
|
while (atomic_load(&state->shared->has_work)) {
|
|
if (atomic_load(&state->shared->stop)) {
|
|
return 0;
|
|
}
|
|
ggml_lock_lock (&state->shared->spin);
|
|
ggml_lock_unlock(&state->shared->spin);
|
|
}
|
|
}
|
|
|
|
atomic_fetch_sub(&state->shared->n_ready, 1);
|
|
|
|
// wait for work
|
|
while (!atomic_load(&state->shared->has_work)) {
|
|
if (atomic_load(&state->shared->stop)) {
|
|
return 0;
|
|
}
|
|
ggml_lock_lock (&state->shared->spin);
|
|
ggml_lock_unlock(&state->shared->spin);
|
|
}
|
|
|
|
// check if we should stop
|
|
if (atomic_load(&state->shared->stop)) {
|
|
break;
|
|
}
|
|
|
|
if (state->node) {
|
|
if (state->params.ith < state->params.nth) {
|
|
ggml_compute_forward(&state->params, state->node);
|
|
}
|
|
|
|
state->node = NULL;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
|
|
const int n_threads = cgraph->n_threads;
|
|
|
|
struct ggml_compute_state_shared state_shared = {
|
|
/*.spin =*/ GGML_LOCK_INITIALIZER,
|
|
/*.n_threads =*/ n_threads,
|
|
/*.n_ready =*/ 0,
|
|
/*.has_work =*/ false,
|
|
/*.stop =*/ false,
|
|
};
|
|
struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
|
|
|
|
// create thread pool
|
|
if (n_threads > 1) {
|
|
ggml_lock_init(&state_shared.spin);
|
|
|
|
atomic_store(&state_shared.has_work, true);
|
|
|
|
for (int j = 0; j < n_threads - 1; j++) {
|
|
workers[j] = (struct ggml_compute_state) {
|
|
.thrd = 0,
|
|
.params = {
|
|
.type = GGML_TASK_COMPUTE,
|
|
.ith = j + 1,
|
|
.nth = n_threads,
|
|
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
|
.wdata = cgraph->work ? cgraph->work->data : NULL,
|
|
},
|
|
.node = NULL,
|
|
.shared = &state_shared,
|
|
};
|
|
|
|
int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
|
|
GGML_ASSERT(rc == 0);
|
|
UNUSED(rc);
|
|
}
|
|
}
|
|
|
|
// initialize tasks + work buffer
|
|
{
|
|
size_t work_size = 0;
|
|
|
|
// thread scheduling for the different operations
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
struct ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_DUP:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = 0;
|
|
if (ggml_is_quantized(node->type)) {
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_ADD1:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = 0;
|
|
|
|
if (ggml_is_quantized(node->src0->type)) {
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_ACC:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = 0;
|
|
|
|
if (ggml_is_quantized(node->src0->type)) {
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_SUB:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SQRT:
|
|
case GGML_OP_LOG:
|
|
case GGML_OP_SUM:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_MEAN:
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_REPEAT_BACK:
|
|
case GGML_OP_ABS:
|
|
case GGML_OP_SGN:
|
|
case GGML_OP_NEG:
|
|
case GGML_OP_STEP:
|
|
case GGML_OP_RELU:
|
|
{
|
|
node->n_tasks = 1;
|
|
} break;
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_GELU:
|
|
case GGML_OP_SILU:
|
|
case GGML_OP_SILU_BACK:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_RMS_NORM_BACK:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
} break;
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_OUT_PROD:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
// TODO: use different scheduling for different matrix sizes
|
|
//const int nr0 = ggml_nrows(node->src0);
|
|
//const int nr1 = ggml_nrows(node->src1);
|
|
|
|
//node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
|
|
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
|
|
|
|
size_t cur = 0;
|
|
|
|
#if defined(GGML_USE_CUBLAS)
|
|
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
|
|
node->n_tasks = 1; // TODO: this actually is doing nothing
|
|
// the threads are still spinning
|
|
}
|
|
else
|
|
#elif defined(GGML_USE_CLBLAST)
|
|
if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
|
|
node->n_tasks = 1; // TODO: this actually is doing nothing
|
|
// the threads are still spinning
|
|
cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
|
|
}
|
|
else
|
|
#endif
|
|
if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
|
node->n_tasks = 1; // TODO: this actually is doing nothing
|
|
// the threads are still spinning
|
|
// here we need memory just for single 2D matrix from src0
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
|
} else {
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
|
|
}
|
|
#else
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
|
|
#endif
|
|
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
|
|
cur = 0;
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
|
node->n_tasks = 1;
|
|
}
|
|
#endif
|
|
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
|
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
|
node->n_tasks = 1;
|
|
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
|
|
} else
|
|
#endif
|
|
{
|
|
const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
|
|
cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
|
|
}
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_SCALE:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
} break;
|
|
case GGML_OP_SET:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_GET_ROWS:
|
|
case GGML_OP_GET_ROWS_BACK:
|
|
case GGML_OP_DIAG:
|
|
case GGML_OP_DIAG_MASK_ZERO:
|
|
{
|
|
node->n_tasks = 1;
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_SOFT_MAX_BACK:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_ROPE_BACK:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
} break;
|
|
case GGML_OP_ALIBI:
|
|
{
|
|
node->n_tasks = 1; //TODO
|
|
} break;
|
|
case GGML_OP_CLAMP:
|
|
{
|
|
node->n_tasks = 1; //TODO
|
|
} break;
|
|
case GGML_OP_CONV_1D_1S:
|
|
case GGML_OP_CONV_1D_2S:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
GGML_ASSERT(node->src0->ne[3] == 1);
|
|
GGML_ASSERT(node->src1->ne[2] == 1);
|
|
GGML_ASSERT(node->src1->ne[3] == 1);
|
|
|
|
size_t cur = 0;
|
|
const int nk = node->src0->ne[0];
|
|
|
|
if (node->src0->type == GGML_TYPE_F16 &&
|
|
node->src1->type == GGML_TYPE_F32) {
|
|
cur = sizeof(ggml_fp16_t)*(
|
|
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
|
|
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
|
|
);
|
|
} else if (node->src0->type == GGML_TYPE_F32 &&
|
|
node->src1->type == GGML_TYPE_F32) {
|
|
cur = sizeof(float)*(
|
|
nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
|
|
( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
|
|
);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = 0;
|
|
|
|
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
|
|
|
if (node->src1->type == GGML_TYPE_F32) {
|
|
cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
|
|
cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
|
|
}
|
|
|
|
if (node->src1->type == GGML_TYPE_F16) {
|
|
cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
|
|
cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_FLASH_FF:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = 0;
|
|
|
|
if (node->src1->type == GGML_TYPE_F32) {
|
|
cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
|
|
cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
|
|
}
|
|
|
|
if (node->src1->type == GGML_TYPE_F16) {
|
|
cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
|
|
cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN_BACK:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = 0;
|
|
|
|
const int64_t D = node->src0->ne[0];
|
|
const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
|
|
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
|
|
if (node->src1->type == GGML_TYPE_F32) {
|
|
cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
|
|
cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
|
|
}
|
|
|
|
if (node->src1->type == GGML_TYPE_F16) {
|
|
cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
|
|
cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
|
|
}
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_MAP_UNARY:
|
|
case GGML_OP_MAP_BINARY:
|
|
{
|
|
node->n_tasks = 1;
|
|
} break;
|
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
|
{
|
|
node->n_tasks = n_threads;
|
|
|
|
size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
|
|
|
|
work_size = MAX(work_size, cur);
|
|
} break;
|
|
case GGML_OP_NONE:
|
|
{
|
|
node->n_tasks = 1;
|
|
} break;
|
|
case GGML_OP_COUNT:
|
|
{
|
|
GGML_ASSERT(false);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
if (cgraph->work != NULL && work_size > cgraph->work_size) {
|
|
GGML_ASSERT(false); // TODO: better handling
|
|
}
|
|
|
|
if (work_size > 0 && cgraph->work == NULL) {
|
|
cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
|
|
|
|
GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
|
|
cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
|
|
}
|
|
}
|
|
|
|
const int64_t perf_start_cycles = ggml_perf_cycles();
|
|
const int64_t perf_start_time_us = ggml_perf_time_us();
|
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
|
|
|
|
struct ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
// TODO: this could be used to avoid unnecessary computations, but it needs to be improved
|
|
//if (node->grad == NULL && node->perf_runs > 0) {
|
|
// continue;
|
|
//}
|
|
|
|
const int64_t perf_node_start_cycles = ggml_perf_cycles();
|
|
const int64_t perf_node_start_time_us = ggml_perf_time_us();
|
|
|
|
// INIT
|
|
struct ggml_compute_params params = {
|
|
/*.type =*/ GGML_TASK_INIT,
|
|
/*.ith =*/ 0,
|
|
/*.nth =*/ node->n_tasks,
|
|
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
|
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
|
};
|
|
|
|
ggml_compute_forward(¶ms, node);
|
|
|
|
// COMPUTE
|
|
if (node->n_tasks > 1) {
|
|
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
|
|
atomic_store(&state_shared.has_work, false);
|
|
}
|
|
|
|
while (atomic_load(&state_shared.has_work)) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
|
|
// launch thread pool
|
|
for (int j = 0; j < n_threads - 1; j++) {
|
|
workers[j].params = (struct ggml_compute_params) {
|
|
.type = GGML_TASK_COMPUTE,
|
|
.ith = j + 1,
|
|
.nth = node->n_tasks,
|
|
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
|
.wdata = cgraph->work ? cgraph->work->data : NULL,
|
|
};
|
|
workers[j].node = node;
|
|
}
|
|
|
|
atomic_fetch_sub(&state_shared.n_ready, 1);
|
|
|
|
while (atomic_load(&state_shared.n_ready) > 0) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
|
|
atomic_store(&state_shared.has_work, true);
|
|
}
|
|
|
|
params.type = GGML_TASK_COMPUTE;
|
|
ggml_compute_forward(¶ms, node);
|
|
|
|
// wait for thread pool
|
|
if (node->n_tasks > 1) {
|
|
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
|
|
atomic_store(&state_shared.has_work, false);
|
|
}
|
|
|
|
while (atomic_load(&state_shared.has_work)) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
|
|
atomic_fetch_sub(&state_shared.n_ready, 1);
|
|
|
|
while (atomic_load(&state_shared.n_ready) != 0) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
}
|
|
|
|
// FINALIZE
|
|
if (node->n_tasks > 1) {
|
|
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
|
|
atomic_store(&state_shared.has_work, false);
|
|
}
|
|
|
|
while (atomic_load(&state_shared.has_work)) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
|
|
// launch thread pool
|
|
for (int j = 0; j < n_threads - 1; j++) {
|
|
workers[j].params = (struct ggml_compute_params) {
|
|
.type = GGML_TASK_FINALIZE,
|
|
.ith = j + 1,
|
|
.nth = node->n_tasks,
|
|
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
|
.wdata = cgraph->work ? cgraph->work->data : NULL,
|
|
};
|
|
workers[j].node = node;
|
|
}
|
|
|
|
atomic_fetch_sub(&state_shared.n_ready, 1);
|
|
|
|
while (atomic_load(&state_shared.n_ready) > 0) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
|
|
atomic_store(&state_shared.has_work, true);
|
|
}
|
|
|
|
params.type = GGML_TASK_FINALIZE;
|
|
ggml_compute_forward(¶ms, node);
|
|
|
|
// wait for thread pool
|
|
if (node->n_tasks > 1) {
|
|
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
|
|
atomic_store(&state_shared.has_work, false);
|
|
}
|
|
|
|
while (atomic_load(&state_shared.has_work)) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
|
|
atomic_fetch_sub(&state_shared.n_ready, 1);
|
|
|
|
while (atomic_load(&state_shared.n_ready) != 0) {
|
|
ggml_lock_lock (&state_shared.spin);
|
|
ggml_lock_unlock(&state_shared.spin);
|
|
}
|
|
}
|
|
|
|
// performance stats (node)
|
|
{
|
|
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
|
|
int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
|
|
|
|
node->perf_runs++;
|
|
node->perf_cycles += perf_cycles_cur;
|
|
node->perf_time_us += perf_time_us_cur;
|
|
}
|
|
}
|
|
|
|
// join thread pool
|
|
if (n_threads > 1) {
|
|
atomic_store(&state_shared.stop, true);
|
|
atomic_store(&state_shared.has_work, true);
|
|
|
|
for (int j = 0; j < n_threads - 1; j++) {
|
|
int rc = ggml_thread_join(workers[j].thrd, NULL);
|
|
GGML_ASSERT(rc == 0);
|
|
UNUSED(rc);
|
|
}
|
|
|
|
ggml_lock_destroy(&state_shared.spin);
|
|
}
|
|
|
|
// performance stats (graph)
|
|
{
|
|
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
|
|
int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
|
|
|
|
cgraph->perf_runs++;
|
|
cgraph->perf_cycles += perf_cycles_cur;
|
|
cgraph->perf_time_us += perf_time_us_cur;
|
|
|
|
GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
|
|
__func__, cgraph->perf_runs,
|
|
(double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
|
|
(double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
|
|
(double) perf_time_us_cur / 1000.0,
|
|
(double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
|
|
}
|
|
}
|
|
|
|
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
struct ggml_tensor * grad = cgraph->grads[i];
|
|
|
|
if (grad) {
|
|
ggml_set_zero(grad);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
|
|
for (int i = 0; i < cgraph->n_leafs; i++) {
|
|
struct ggml_tensor * leaf = cgraph->leafs[i];
|
|
|
|
if (strcmp(leaf->name, name) == 0) {
|
|
return leaf;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
struct ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
if (strcmp(node->name, name) == 0) {
|
|
return node;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
|
|
const int64_t * ne = tensor->ne;
|
|
const size_t * nb = tensor->nb;
|
|
|
|
fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
|
|
ggml_type_name(tensor->type),
|
|
ggml_op_name (tensor->op),
|
|
tensor->n_dims,
|
|
ne[0], ne[1], ne[2], ne[3],
|
|
nb[0], nb[1], nb[2], nb[3],
|
|
tensor->data,
|
|
tensor->name);
|
|
}
|
|
|
|
static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
|
|
const int64_t * ne = tensor->ne;
|
|
const size_t * nb = tensor->nb;
|
|
|
|
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
|
|
arg,
|
|
ggml_type_name(tensor->type),
|
|
ggml_op_name (tensor->op),
|
|
tensor->n_dims,
|
|
ne[0], ne[1], ne[2], ne[3],
|
|
nb[0], nb[1], nb[2], nb[3],
|
|
tensor->n_tasks,
|
|
tensor->data,
|
|
tensor->name);
|
|
}
|
|
|
|
void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
|
|
//assert(cgraph->work == NULL);
|
|
//assert(cgraph->work_size == 0);
|
|
|
|
uint64_t size_eval = 0;
|
|
|
|
// compute size of intermediate results
|
|
// TODO: does not take into account scratch buffers !!!!
|
|
for (int i = 0; i < cgraph->n_nodes; ++i) {
|
|
size_eval += ggml_nbytes(cgraph->nodes[i]);
|
|
}
|
|
|
|
// print
|
|
{
|
|
FILE * fout = stdout;
|
|
|
|
fprintf(fout, "\n");
|
|
fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
|
|
fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
|
|
fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
|
|
fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
|
|
fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
|
|
|
|
// header
|
|
fprintf(fout, "\n");
|
|
fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
|
|
"TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
|
|
|
|
for (int i = 0; i < cgraph->n_leafs; ++i) {
|
|
ggml_graph_export_leaf(cgraph->leafs[i], fout);
|
|
|
|
GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
|
|
GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
|
|
GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
|
|
}
|
|
|
|
// header
|
|
fprintf(fout, "\n");
|
|
fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
|
|
"ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
|
|
|
|
for (int i = 0; i < cgraph->n_nodes; ++i) {
|
|
ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
|
|
|
|
if (cgraph->nodes[i]->src0) {
|
|
ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
|
|
}
|
|
|
|
if (cgraph->nodes[i]->src1) {
|
|
ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
|
|
}
|
|
|
|
for (int j = 0; j < GGML_MAX_OPT; ++j) {
|
|
if (cgraph->nodes[i]->opt[j]) {
|
|
ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
|
|
}
|
|
}
|
|
|
|
fprintf(fout, "\n");
|
|
}
|
|
|
|
fprintf(fout, "\n");
|
|
}
|
|
|
|
// write binary data
|
|
{
|
|
FILE * fout = fopen(fname, "wb");
|
|
|
|
if (!fout) {
|
|
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
|
|
return;
|
|
}
|
|
|
|
// header
|
|
{
|
|
const uint32_t magic = GGML_FILE_MAGIC;
|
|
const uint32_t version = GGML_FILE_VERSION;
|
|
const uint32_t n_leafs = cgraph->n_leafs;
|
|
const uint32_t nodes = cgraph->n_nodes;
|
|
|
|
fwrite(&magic, sizeof(uint32_t), 1, fout);
|
|
fwrite(&version, sizeof(uint32_t), 1, fout);
|
|
fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
|
|
fwrite(&nodes, sizeof(uint32_t), 1, fout);
|
|
fwrite(&size_eval, sizeof(uint64_t), 1, fout);
|
|
}
|
|
|
|
// leafs
|
|
{
|
|
for (int i = 0; i < cgraph->n_leafs; ++i) {
|
|
const struct ggml_tensor * tensor = cgraph->leafs[i];
|
|
|
|
const uint32_t type = tensor->type;
|
|
const uint32_t op = tensor->op;
|
|
const uint32_t n_dims = tensor->n_dims;
|
|
|
|
fwrite(&type, sizeof(uint32_t), 1, fout);
|
|
fwrite(&op, sizeof(uint32_t), 1, fout);
|
|
fwrite(&n_dims, sizeof(uint32_t), 1, fout);
|
|
|
|
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
|
const uint64_t ne = tensor->ne[j];
|
|
const uint64_t nb = tensor->nb[j];
|
|
|
|
fwrite(&ne, sizeof(uint64_t), 1, fout);
|
|
fwrite(&nb, sizeof(uint64_t), 1, fout);
|
|
}
|
|
|
|
// store the pointer address
|
|
{
|
|
const uint64_t ptr = (uint64_t) tensor->data;
|
|
|
|
fwrite(&ptr, sizeof(uint64_t), 1, fout);
|
|
}
|
|
|
|
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
|
|
|
|
// dump the data
|
|
// TODO: pad this to 32 byte boundary
|
|
{
|
|
const size_t size = ggml_nbytes(tensor);
|
|
|
|
fwrite(tensor->data, sizeof(char), size, fout);
|
|
}
|
|
}
|
|
}
|
|
|
|
// nodes
|
|
{
|
|
for (int i = 0; i < cgraph->n_nodes; ++i) {
|
|
const struct ggml_tensor * tensor = cgraph->nodes[i];
|
|
|
|
const uint32_t type = tensor->type;
|
|
const uint32_t op = tensor->op;
|
|
const uint32_t n_dims = tensor->n_dims;
|
|
|
|
fwrite(&type, sizeof(uint32_t), 1, fout);
|
|
fwrite(&op, sizeof(uint32_t), 1, fout);
|
|
fwrite(&n_dims, sizeof(uint32_t), 1, fout);
|
|
|
|
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
|
const uint64_t ne = tensor->ne[j];
|
|
const uint64_t nb = tensor->nb[j];
|
|
|
|
fwrite(&ne, sizeof(uint64_t), 1, fout);
|
|
fwrite(&nb, sizeof(uint64_t), 1, fout);
|
|
}
|
|
|
|
// store the pointer address
|
|
{
|
|
const uint64_t ptr = (uint64_t) tensor->data;
|
|
|
|
fwrite(&ptr, sizeof(uint64_t), 1, fout);
|
|
}
|
|
|
|
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
|
|
|
|
// output the op arguments
|
|
{
|
|
struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
|
|
|
|
args[0] = tensor->src0;
|
|
args[1] = tensor->src1;
|
|
|
|
for (int j = 0; j < GGML_MAX_OPT; ++j) {
|
|
args[2 + j] = tensor->opt[j];
|
|
}
|
|
|
|
for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
|
|
if (args[j]) {
|
|
int32_t idx = -1;
|
|
|
|
// check if leaf
|
|
{
|
|
for (int k = 0; k < cgraph->n_leafs; ++k) {
|
|
if (args[j] == cgraph->leafs[k]) {
|
|
idx = k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check if node
|
|
if (idx == -1) {
|
|
for (int k = 0; k < cgraph->n_nodes; ++k) {
|
|
if (args[j] == cgraph->nodes[k]) {
|
|
idx = GGML_MAX_NODES + k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (idx == -1) {
|
|
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
|
|
return;
|
|
}
|
|
|
|
fwrite(&idx, sizeof(int32_t), 1, fout);
|
|
} else {
|
|
const int32_t nul = -1;
|
|
|
|
fwrite(&nul, sizeof(int32_t), 1, fout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fclose(fout);
|
|
}
|
|
}
|
|
|
|
struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
|
|
assert(*ctx_data == NULL);
|
|
assert(*ctx_eval == NULL);
|
|
|
|
struct ggml_cgraph result = { 0 };
|
|
|
|
struct ggml_tensor * data = NULL;
|
|
|
|
// read file into data
|
|
{
|
|
FILE * fin = fopen(fname, "rb");
|
|
if (!fin) {
|
|
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
|
|
return result;
|
|
}
|
|
|
|
size_t fsize = 0;
|
|
|
|
fseek(fin, 0, SEEK_END);
|
|
fsize = ftell(fin);
|
|
fseek(fin, 0, SEEK_SET);
|
|
|
|
// create the data context
|
|
{
|
|
const size_t overhead = 1*ggml_tensor_overhead();
|
|
|
|
struct ggml_init_params params = {
|
|
.mem_size = fsize + overhead,
|
|
.mem_buffer = NULL,
|
|
.no_alloc = false,
|
|
};
|
|
|
|
*ctx_data = ggml_init(params);
|
|
|
|
if (!*ctx_data) {
|
|
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
|
|
|
|
const size_t ret = fread(data->data, sizeof(char), fsize, fin);
|
|
if (ret != fsize) {
|
|
fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
|
|
return result;
|
|
}
|
|
|
|
fclose(fin);
|
|
}
|
|
|
|
// populate result
|
|
{
|
|
char * ptr = (char *) data->data;
|
|
|
|
const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
|
|
|
|
if (magic != GGML_FILE_MAGIC) {
|
|
fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
|
|
return result;
|
|
}
|
|
|
|
const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
|
|
|
|
if (version != GGML_FILE_VERSION) {
|
|
fprintf(stderr, "%s: invalid version number\n", __func__);
|
|
return result;
|
|
}
|
|
|
|
const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
|
|
const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
|
|
const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
|
|
|
|
result.n_leafs = n_leafs;
|
|
result.n_nodes = n_nodes;
|
|
|
|
// create the data context
|
|
{
|
|
const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
|
|
|
|
struct ggml_init_params params = {
|
|
.mem_size = size_eval + overhead,
|
|
.mem_buffer = NULL,
|
|
.no_alloc = true,
|
|
};
|
|
|
|
*ctx_eval = ggml_init(params);
|
|
|
|
if (!*ctx_eval) {
|
|
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// leafs
|
|
{
|
|
uint32_t type;
|
|
uint32_t op;
|
|
uint32_t n_dims;
|
|
|
|
for (uint32_t i = 0; i < n_leafs; ++i) {
|
|
type = *(const uint32_t *) ptr; ptr += sizeof(type);
|
|
op = *(const uint32_t *) ptr; ptr += sizeof(op);
|
|
n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
|
|
|
|
int64_t ne[GGML_MAX_DIMS];
|
|
size_t nb[GGML_MAX_DIMS];
|
|
|
|
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
|
uint64_t ne_cur;
|
|
uint64_t nb_cur;
|
|
|
|
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
|
|
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
|
|
|
|
ne[j] = ne_cur;
|
|
nb[j] = nb_cur;
|
|
}
|
|
|
|
struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
|
|
|
|
tensor->op = (enum ggml_op) op;
|
|
|
|
uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
|
|
|
|
memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
|
|
|
|
tensor->data = (void *) ptr;
|
|
|
|
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
|
tensor->nb[j] = nb[j];
|
|
}
|
|
|
|
result.leafs[i] = tensor;
|
|
|
|
ptr += ggml_nbytes(tensor);
|
|
|
|
fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
|
|
}
|
|
}
|
|
|
|
ggml_set_no_alloc(*ctx_eval, false);
|
|
|
|
// nodes
|
|
{
|
|
uint32_t type;
|
|
uint32_t op;
|
|
uint32_t n_dims;
|
|
|
|
for (uint32_t i = 0; i < n_nodes; ++i) {
|
|
type = *(const uint32_t *) ptr; ptr += sizeof(type);
|
|
op = *(const uint32_t *) ptr; ptr += sizeof(op);
|
|
n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
|
|
|
|
enum ggml_op eop = (enum ggml_op) op;
|
|
|
|
int64_t ne[GGML_MAX_DIMS];
|
|
size_t nb[GGML_MAX_DIMS];
|
|
|
|
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
|
uint64_t ne_cur;
|
|
uint64_t nb_cur;
|
|
|
|
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
|
|
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
|
|
|
|
ne[j] = ne_cur;
|
|
nb[j] = nb_cur;
|
|
}
|
|
|
|
uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
|
|
|
|
const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
|
|
|
|
const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
|
|
|
|
struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
|
|
|
|
// parse args
|
|
for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
|
|
const int32_t arg_idx = ptr_arg_idx[j];
|
|
|
|
if (arg_idx == -1) {
|
|
continue;
|
|
}
|
|
|
|
if (arg_idx < GGML_MAX_NODES) {
|
|
args[j] = result.leafs[arg_idx];
|
|
} else {
|
|
args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
|
|
}
|
|
}
|
|
|
|
// create the tensor
|
|
// "view" operations are handled differently
|
|
// TODO: handle inplace ops - currently a copy is always made
|
|
|
|
struct ggml_tensor * tensor = NULL;
|
|
|
|
switch (eop) {
|
|
// TODO: implement other view ops
|
|
case GGML_OP_RESHAPE:
|
|
{
|
|
tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
|
|
} break;
|
|
case GGML_OP_VIEW:
|
|
{
|
|
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
|
|
|
|
uint64_t offs;
|
|
memcpy(&offs, args[2]->data, sizeof(offs));
|
|
|
|
tensor->data = ((char *) tensor->data) + offs;
|
|
} break;
|
|
case GGML_OP_TRANSPOSE:
|
|
{
|
|
tensor = ggml_transpose(*ctx_eval, args[0]);
|
|
} break;
|
|
case GGML_OP_PERMUTE:
|
|
{
|
|
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
|
|
} break;
|
|
default:
|
|
{
|
|
tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
|
|
|
|
tensor->op = eop;
|
|
} break;
|
|
}
|
|
|
|
memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
|
|
|
|
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
|
|
tensor->nb[j] = nb[j];
|
|
}
|
|
|
|
tensor->src0 = args[0];
|
|
tensor->src1 = args[1];
|
|
|
|
for (int j = 0; j < GGML_MAX_OPT; ++j) {
|
|
tensor->opt[j] = args[2 + j];
|
|
}
|
|
|
|
result.nodes[i] = tensor;
|
|
|
|
fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
|
int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
|
|
|
|
GGML_PRINT("=== GRAPH ===\n");
|
|
|
|
GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
|
|
GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
|
|
|
|
GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
struct ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
|
|
|
|
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
|
i,
|
|
node->ne[0], node->ne[1], node->ne[2],
|
|
GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
|
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
|
|
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
|
|
(double) node->perf_time_us / 1000.0,
|
|
(double) node->perf_time_us / 1000.0 / node->perf_runs);
|
|
}
|
|
|
|
GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
|
|
for (int i = 0; i < cgraph->n_leafs; i++) {
|
|
struct ggml_tensor * node = cgraph->leafs[i];
|
|
|
|
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
|
|
i,
|
|
node->ne[0], node->ne[1],
|
|
GGML_OP_NAME[node->op]);
|
|
}
|
|
|
|
for (int i = 0; i < GGML_OP_COUNT; i++) {
|
|
if (perf_total_per_op_us[i] == 0) {
|
|
continue;
|
|
}
|
|
|
|
GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
|
|
}
|
|
|
|
GGML_PRINT("========================================\n");
|
|
}
|
|
|
|
// check if node is part of the graph
|
|
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
|
|
if (cgraph == NULL) {
|
|
return true;
|
|
}
|
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
if (cgraph->nodes[i] == node) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
struct ggml_tensor * parent = cgraph->nodes[i];
|
|
|
|
if (parent->grad == node) {
|
|
return parent;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
|
|
char color[16];
|
|
|
|
FILE * fp = fopen(filename, "w");
|
|
GGML_ASSERT(fp);
|
|
|
|
fprintf(fp, "digraph G {\n");
|
|
fprintf(fp, " newrank = true;\n");
|
|
fprintf(fp, " rankdir = LR;\n");
|
|
|
|
for (int i = 0; i < gb->n_nodes; i++) {
|
|
struct ggml_tensor * node = gb->nodes[i];
|
|
|
|
if (ggml_graph_get_parent(gb, node) != NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (node->is_param) {
|
|
snprintf(color, sizeof(color), "yellow");
|
|
} else if (node->grad) {
|
|
if (ggml_graph_find(gf, node)) {
|
|
snprintf(color, sizeof(color), "green");
|
|
} else {
|
|
snprintf(color, sizeof(color), "lightblue");
|
|
}
|
|
} else {
|
|
snprintf(color, sizeof(color), "white");
|
|
}
|
|
|
|
fprintf(fp, " \"%p\" [ "
|
|
"style = filled; fillcolor = %s; shape = record; "
|
|
"label=\"",
|
|
(void *) node, color);
|
|
|
|
if (strlen(node->name) > 0) {
|
|
fprintf(fp, "%s |", node->name);
|
|
}
|
|
|
|
if (node->n_dims == 2) {
|
|
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
|
|
} else {
|
|
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
|
|
}
|
|
|
|
|
|
if (node->grad) {
|
|
fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
|
|
} else {
|
|
fprintf(fp, "\"; ]\n");
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < gb->n_leafs; i++) {
|
|
struct ggml_tensor * node = gb->leafs[i];
|
|
|
|
snprintf(color, sizeof(color), "pink");
|
|
|
|
fprintf(fp, " \"%p\" [ "
|
|
"style = filled; fillcolor = %s; shape = record; "
|
|
"label=\"<x>",
|
|
(void *) node, color);
|
|
|
|
if (strlen(node->name) > 0) {
|
|
fprintf(fp, "%s | ", node->name);
|
|
}
|
|
if (ggml_nelements(node) == 1) {
|
|
if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
|
|
fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
|
|
}
|
|
else {
|
|
fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
|
|
}
|
|
}
|
|
else {
|
|
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
|
|
}
|
|
fprintf(fp, "\"; ]\n");
|
|
}
|
|
|
|
for (int i = 0; i < gb->n_nodes; i++) {
|
|
struct ggml_tensor * node = gb->nodes[i];
|
|
|
|
struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
|
|
|
|
if (node->src0) {
|
|
struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
|
|
|
|
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
|
|
parent0 ? (void *) parent0 : (void *) node->src0,
|
|
parent0 ? "g" : "x",
|
|
parent ? (void *) parent : (void *) node,
|
|
parent ? "g" : "x",
|
|
parent ? "empty" : "vee",
|
|
parent ? "dashed" : "solid");
|
|
}
|
|
|
|
if (node->src1) {
|
|
struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
|
|
|
|
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
|
|
parent1 ? (void *) parent1 : (void *) node->src1,
|
|
parent1 ? "g" : "x",
|
|
parent ? (void *) parent : (void *) node,
|
|
parent ? "g" : "x",
|
|
parent ? "empty" : "vee",
|
|
parent ? "dashed" : "solid");
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < gb->n_leafs; i++) {
|
|
struct ggml_tensor * node = gb->leafs[i];
|
|
|
|
if (node->src0) {
|
|
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
|
|
(void *) node->src0, "x",
|
|
(void *) node, "x");
|
|
}
|
|
|
|
if (node->src1) {
|
|
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
|
|
(void *) node->src1, "x",
|
|
(void *) node, "x");
|
|
}
|
|
}
|
|
|
|
fprintf(fp, "}\n");
|
|
|
|
fclose(fp);
|
|
|
|
GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
|
|
int i = 0;
|
|
for (int p = 0; p < np; ++p) {
|
|
const int64_t ne = ggml_nelements(ps[p]) ;
|
|
// TODO: add function to set tensor from array
|
|
for (int64_t j = 0; j < ne; ++j) {
|
|
ggml_set_f32_1d(ps[p], j, x[i++]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
|
|
int i = 0;
|
|
for (int p = 0; p < np; ++p) {
|
|
const int64_t ne = ggml_nelements(ps[p]) ;
|
|
// TODO: add function to get all elements at once
|
|
for (int64_t j = 0; j < ne; ++j) {
|
|
x[i++] = ggml_get_f32_1d(ps[p], j);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
|
|
int i = 0;
|
|
for (int p = 0; p < np; ++p) {
|
|
const int64_t ne = ggml_nelements(ps[p]) ;
|
|
// TODO: add function to get all elements at once
|
|
for (int64_t j = 0; j < ne; ++j) {
|
|
g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// ADAM
|
|
//
|
|
// ref: https://arxiv.org/pdf/1412.6980.pdf
|
|
//
|
|
|
|
static enum ggml_opt_result ggml_opt_adam(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb) {
|
|
GGML_ASSERT(ggml_is_scalar(f));
|
|
|
|
gf->n_threads = params.n_threads;
|
|
gb->n_threads = params.n_threads;
|
|
|
|
// these will store the parameters we want to optimize
|
|
struct ggml_tensor * ps[GGML_MAX_PARAMS];
|
|
|
|
int np = 0;
|
|
int nx = 0;
|
|
for (int i = 0; i < gf->n_nodes; ++i) {
|
|
if (gf->nodes[i]->is_param) {
|
|
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
|
|
|
|
GGML_ASSERT(np < GGML_MAX_PARAMS);
|
|
|
|
ps[np++] = gf->nodes[i];
|
|
nx += ggml_nelements(gf->nodes[i]);
|
|
}
|
|
}
|
|
|
|
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
|
|
int iter = opt->iter;
|
|
ggml_opt_init(opt->ctx, opt, params, nx);
|
|
opt->iter = iter;
|
|
}
|
|
|
|
// constants
|
|
const float sched = params.adam.sched;
|
|
const float decay = params.adam.decay * sched;
|
|
const float alpha = params.adam.alpha * sched;
|
|
const float beta1 = params.adam.beta1;
|
|
const float beta2 = params.adam.beta2;
|
|
const float eps = params.adam.eps;
|
|
|
|
float * x = opt->adam.x->data; // view of the parameters
|
|
float * g1 = opt->adam.g1->data; // gradient
|
|
float * g2 = opt->adam.g2->data; // gradient squared
|
|
float * m = opt->adam.m->data; // first moment
|
|
float * v = opt->adam.v->data; // second moment
|
|
float * mh = opt->adam.mh->data; // first moment hat
|
|
float * vh = opt->adam.vh->data; // second moment hat
|
|
|
|
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
|
|
|
|
// update view
|
|
ggml_opt_get_params(np, ps, x);
|
|
|
|
// compute the function value
|
|
ggml_graph_reset (gf);
|
|
ggml_set_f32 (f->grad, 1.0f);
|
|
ggml_graph_compute(ctx, gb);
|
|
|
|
opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
|
|
opt->adam.fx_best = opt->adam.fx_prev;
|
|
if (pf) {
|
|
pf[opt->iter % params.past] = opt->adam.fx_prev;
|
|
}
|
|
|
|
// initialize
|
|
if (opt->just_initialized) {
|
|
opt->adam.n_no_improvement = 0;
|
|
opt->just_initialized = false;
|
|
}
|
|
|
|
float * fx_best = &opt->adam.fx_best;
|
|
float * fx_prev = &opt->adam.fx_prev;
|
|
int * n_no_improvement = &opt->adam.n_no_improvement;
|
|
|
|
int iter0 = opt->iter;
|
|
|
|
// run the optimizer
|
|
for (int t = 0; t < params.adam.n_iter; ++t) {
|
|
opt->iter = iter0 + t + 1;
|
|
GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
|
|
|
|
GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
|
|
GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
|
|
GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
|
|
|
|
for (int i = 0; i < np; ++i) {
|
|
GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
|
|
ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
|
|
}
|
|
|
|
const int64_t t_start_wall = ggml_time_us();
|
|
const int64_t t_start_cpu = ggml_cycles();
|
|
UNUSED(t_start_wall);
|
|
UNUSED(t_start_cpu);
|
|
|
|
{
|
|
// update the gradient
|
|
ggml_opt_get_grad(np, ps, g1);
|
|
|
|
// m_t = beta1*m_t-1 + (1 - beta1)*g_t
|
|
ggml_vec_scale_f32(nx, m, beta1);
|
|
ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
|
|
|
|
// g2 = g1^2
|
|
ggml_vec_sqr_f32 (nx, g2, g1);
|
|
|
|
// v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
|
|
ggml_vec_scale_f32(nx, v, beta2);
|
|
ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
|
|
|
|
// m^hat = m_t / (1 - beta1^t)
|
|
// v^hat = v_t / (1 - beta2^t)
|
|
// x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
|
|
// x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
|
|
// x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
|
|
// x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
|
|
// x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
|
|
ggml_vec_cpy_f32 (nx, mh, m);
|
|
ggml_vec_cpy_f32 (nx, vh, v);
|
|
|
|
ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
|
|
ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
|
|
|
|
ggml_vec_sqrt_f32 (nx, vh, vh);
|
|
ggml_vec_acc1_f32 (nx, vh, eps);
|
|
|
|
ggml_vec_div_f32 (nx, mh, mh, vh);
|
|
ggml_vec_scale_f32(nx, x, 1.0f - decay);
|
|
ggml_vec_sub_f32 (nx, x, x, mh);
|
|
|
|
// update the parameters
|
|
ggml_opt_set_params(np, ps, x);
|
|
}
|
|
|
|
ggml_graph_reset (gf);
|
|
ggml_set_f32 (f->grad, 1.0f);
|
|
ggml_graph_compute(ctx, gb);
|
|
|
|
const float fx = ggml_get_f32_1d(f, 0);
|
|
|
|
// check convergence
|
|
if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
|
|
GGML_PRINT_DEBUG("converged\n");
|
|
|
|
return GGML_OPT_OK;
|
|
}
|
|
|
|
// delta-based convergence test
|
|
if (pf != NULL) {
|
|
// need at least params.past iterations to start checking for convergence
|
|
if (params.past <= iter0 + t) {
|
|
const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
|
|
|
|
if (fabsf(rate) < params.delta) {
|
|
return GGML_OPT_OK;
|
|
}
|
|
}
|
|
|
|
pf[(iter0 + t)%params.past] = fx;
|
|
}
|
|
|
|
// check for improvement
|
|
if (params.max_no_improvement > 0) {
|
|
if (fx_best[0] > fx) {
|
|
fx_best[0] = fx;
|
|
n_no_improvement[0] = 0;
|
|
} else {
|
|
++n_no_improvement[0];
|
|
|
|
if (n_no_improvement[0] >= params.max_no_improvement) {
|
|
return GGML_OPT_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
fx_prev[0] = fx;
|
|
|
|
{
|
|
const int64_t t_end_cpu = ggml_cycles();
|
|
GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
|
|
UNUSED(t_end_cpu);
|
|
|
|
const int64_t t_end_wall = ggml_time_us();
|
|
GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
|
|
UNUSED(t_end_wall);
|
|
}
|
|
}
|
|
|
|
return GGML_OPT_DID_NOT_CONVERGE;
|
|
}
|
|
|
|
//
|
|
// L-BFGS
|
|
//
|
|
// the L-BFGS implementation below is based on the following implementation:
|
|
//
|
|
// https://github.com/chokkan/liblbfgs
|
|
//
|
|
|
|
struct ggml_lbfgs_iteration_data {
|
|
float alpha;
|
|
float ys;
|
|
float * s;
|
|
float * y;
|
|
};
|
|
|
|
static enum ggml_opt_result linesearch_backtracking(
|
|
struct ggml_context * ctx,
|
|
const struct ggml_opt_params * params,
|
|
int nx,
|
|
float * x,
|
|
float * fx,
|
|
float * g,
|
|
float * d,
|
|
float * step,
|
|
const float * xp,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb,
|
|
const int np,
|
|
struct ggml_tensor * ps[]) {
|
|
int count = 0;
|
|
|
|
float width = 0.0f;
|
|
float dg = 0.0f;
|
|
float finit = 0.0f;
|
|
float dginit = 0.0f;
|
|
float dgtest = 0.0f;
|
|
|
|
const float dec = 0.5f;
|
|
const float inc = 2.1f;
|
|
|
|
if (*step <= 0.f) {
|
|
return GGML_LINESEARCH_INVALID_PARAMETERS;
|
|
}
|
|
|
|
// compute the initial gradient in the search direction
|
|
ggml_vec_dot_f32(nx, &dginit, g, d);
|
|
|
|
// make sure that d points to a descent direction
|
|
if (0 < dginit) {
|
|
return GGML_LINESEARCH_FAIL;
|
|
}
|
|
|
|
// initialize local variables
|
|
finit = *fx;
|
|
dgtest = params->lbfgs.ftol*dginit;
|
|
|
|
while (true) {
|
|
ggml_vec_cpy_f32(nx, x, xp);
|
|
ggml_vec_mad_f32(nx, x, d, *step);
|
|
|
|
// evaluate the function and gradient values
|
|
{
|
|
ggml_opt_set_params(np, ps, x);
|
|
|
|
ggml_graph_reset (gf);
|
|
ggml_set_f32 (f->grad, 1.0f);
|
|
ggml_graph_compute(ctx, gb);
|
|
|
|
ggml_opt_get_grad(np, ps, g);
|
|
|
|
*fx = ggml_get_f32_1d(f, 0);
|
|
}
|
|
|
|
++count;
|
|
|
|
if (*fx > finit + (*step)*dgtest) {
|
|
width = dec;
|
|
} else {
|
|
// Armijo condition is satisfied
|
|
if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
|
|
return count;
|
|
}
|
|
|
|
ggml_vec_dot_f32(nx, &dg, g, d);
|
|
|
|
// check the Wolfe condition
|
|
if (dg < params->lbfgs.wolfe * dginit) {
|
|
width = inc;
|
|
} else {
|
|
if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
|
|
// regular Wolfe conditions
|
|
return count;
|
|
}
|
|
|
|
if(dg > -params->lbfgs.wolfe*dginit) {
|
|
width = dec;
|
|
} else {
|
|
// strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
|
|
return count;
|
|
}
|
|
return count;
|
|
}
|
|
}
|
|
|
|
if (*step < params->lbfgs.min_step) {
|
|
return GGML_LINESEARCH_MINIMUM_STEP;
|
|
}
|
|
if (*step > params->lbfgs.max_step) {
|
|
return GGML_LINESEARCH_MAXIMUM_STEP;
|
|
}
|
|
if (params->lbfgs.max_linesearch <= count) {
|
|
return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
|
|
}
|
|
|
|
(*step) *= width;
|
|
}
|
|
|
|
return GGML_LINESEARCH_FAIL;
|
|
}
|
|
|
|
static enum ggml_opt_result ggml_opt_lbfgs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb) {
|
|
if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
|
|
params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
|
|
if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
|
|
return GGML_OPT_INVALID_WOLFE;
|
|
}
|
|
}
|
|
|
|
gf->n_threads = params.n_threads;
|
|
gb->n_threads = params.n_threads;
|
|
|
|
const int m = params.lbfgs.m;
|
|
|
|
// these will store the parameters we want to optimize
|
|
struct ggml_tensor * ps[GGML_MAX_PARAMS];
|
|
|
|
int np = 0;
|
|
int nx = 0;
|
|
for (int i = 0; i < gf->n_nodes; ++i) {
|
|
if (gf->nodes[i]->is_param) {
|
|
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
|
|
|
|
GGML_ASSERT(np < GGML_MAX_PARAMS);
|
|
|
|
ps[np++] = gf->nodes[i];
|
|
nx += ggml_nelements(gf->nodes[i]);
|
|
}
|
|
}
|
|
|
|
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
|
|
int iter = opt->iter;
|
|
ggml_opt_init(ctx, opt, params, nx);
|
|
opt->iter = iter;
|
|
}
|
|
|
|
float * x = opt->lbfgs.x->data; // current parameters
|
|
float * xp = opt->lbfgs.xp->data; // previous parameters
|
|
float * g = opt->lbfgs.g->data; // current gradient
|
|
float * gp = opt->lbfgs.gp->data; // previous gradient
|
|
float * d = opt->lbfgs.d->data; // search direction
|
|
|
|
float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
|
|
|
|
float fx = 0.0f; // cost function value
|
|
float xnorm = 0.0f; // ||x||
|
|
float gnorm = 0.0f; // ||g||
|
|
|
|
// initialize x from the graph nodes
|
|
ggml_opt_get_params(np, ps, x);
|
|
|
|
// the L-BFGS memory
|
|
float * lm_alpha = opt->lbfgs.lmal->data;
|
|
float * lm_ys = opt->lbfgs.lmys->data;
|
|
float * lm_s = opt->lbfgs.lms->data;
|
|
float * lm_y = opt->lbfgs.lmy->data;
|
|
|
|
// evaluate the function value and its gradient
|
|
{
|
|
ggml_opt_set_params(np, ps, x);
|
|
|
|
ggml_graph_reset (gf);
|
|
ggml_set_f32 (f->grad, 1.0f);
|
|
ggml_graph_compute(ctx, gb);
|
|
|
|
ggml_opt_get_grad(np, ps, g);
|
|
|
|
fx = ggml_get_f32_1d(f, 0);
|
|
}
|
|
|
|
// search direction = -gradient
|
|
ggml_vec_neg_f32(nx, d, g);
|
|
|
|
// ||x||, ||g||
|
|
ggml_vec_norm_f32(nx, &xnorm, x);
|
|
ggml_vec_norm_f32(nx, &gnorm, g);
|
|
|
|
if (xnorm < 1.0f) {
|
|
xnorm = 1.0f;
|
|
}
|
|
|
|
// already optimized
|
|
if (gnorm/xnorm <= params.lbfgs.eps) {
|
|
return GGML_OPT_OK;
|
|
}
|
|
|
|
if (opt->just_initialized) {
|
|
if (pf) {
|
|
pf[0] = fx;
|
|
}
|
|
opt->lbfgs.fx_best = fx;
|
|
|
|
// initial step
|
|
ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
|
|
opt->lbfgs.j = 0;
|
|
opt->lbfgs.k = 1;
|
|
opt->lbfgs.end = 0;
|
|
opt->lbfgs.n_no_improvement = 0;
|
|
opt->just_initialized = false;
|
|
}
|
|
|
|
float * fx_best = &opt->lbfgs.fx_best;
|
|
float * step = &opt->lbfgs.step;
|
|
int * j = &opt->lbfgs.j;
|
|
int * k = &opt->lbfgs.k;
|
|
int * end = &opt->lbfgs.end;
|
|
int * n_no_improvement = &opt->lbfgs.n_no_improvement;
|
|
|
|
int ls = 0;
|
|
int bound = 0;
|
|
|
|
float ys = 0.0f;
|
|
float yy = 0.0f;
|
|
float beta = 0.0f;
|
|
|
|
int it = 0;
|
|
|
|
while (true) {
|
|
// store the current position and gradient vectors
|
|
ggml_vec_cpy_f32(nx, xp, x);
|
|
ggml_vec_cpy_f32(nx, gp, g);
|
|
|
|
ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
|
|
|
|
if (ls < 0) {
|
|
// linesearch failed - go back to the previous point and return
|
|
ggml_vec_cpy_f32(nx, x, xp);
|
|
ggml_vec_cpy_f32(nx, g, gp);
|
|
|
|
return ls;
|
|
}
|
|
|
|
ggml_vec_norm_f32(nx, &xnorm, x);
|
|
ggml_vec_norm_f32(nx, &gnorm, g);
|
|
|
|
GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
|
|
|
|
if (xnorm < 1.0f) {
|
|
xnorm = 1.0f;
|
|
}
|
|
if (gnorm/xnorm <= params.lbfgs.eps) {
|
|
// converged
|
|
return GGML_OPT_OK;
|
|
}
|
|
|
|
// delta-based convergence test
|
|
if (pf != NULL) {
|
|
// need at least params.past iterations to start checking for convergence
|
|
if (params.past <= k[0]) {
|
|
const float rate = (pf[k[0]%params.past] - fx)/fx;
|
|
|
|
if (fabsf(rate) < params.delta) {
|
|
return GGML_OPT_OK;
|
|
}
|
|
}
|
|
|
|
pf[k[0]%params.past] = fx;
|
|
}
|
|
|
|
// check for improvement
|
|
if (params.max_no_improvement > 0) {
|
|
if (fx < fx_best[0]) {
|
|
fx_best[0] = fx;
|
|
n_no_improvement[0] = 0;
|
|
} else {
|
|
n_no_improvement[0]++;
|
|
|
|
if (n_no_improvement[0] >= params.max_no_improvement) {
|
|
return GGML_OPT_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
|
|
// reached the maximum number of iterations
|
|
return GGML_OPT_DID_NOT_CONVERGE;
|
|
}
|
|
|
|
// update vectors s and y:
|
|
// s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
|
|
// y_{k+1} = g_{k+1} - g_{k}.
|
|
//
|
|
ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
|
|
ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
|
|
|
|
// compute scalars ys and yy:
|
|
// ys = y^t \cdot s -> 1 / \rho.
|
|
// yy = y^t \cdot y.
|
|
//
|
|
ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
|
|
ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
|
|
|
|
lm_ys[end[0]] = ys;
|
|
|
|
// find new search direction
|
|
// ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
|
|
|
|
bound = (m <= k[0]) ? m : k[0];
|
|
k[0]++;
|
|
it++;
|
|
end[0] = (end[0] + 1)%m;
|
|
|
|
// initialize search direction with -g
|
|
ggml_vec_neg_f32(nx, d, g);
|
|
|
|
j[0] = end[0];
|
|
for (int i = 0; i < bound; ++i) {
|
|
j[0] = (j[0] + m - 1) % m;
|
|
// \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
|
|
ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
|
|
lm_alpha[j[0]] /= lm_ys[j[0]];
|
|
// q_{i} = q_{i+1} - \alpha_{i} y_{i}
|
|
ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
|
|
}
|
|
|
|
ggml_vec_scale_f32(nx, d, ys/yy);
|
|
|
|
for (int i = 0; i < bound; ++i) {
|
|
// \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
|
|
ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
|
|
beta /= lm_ys[j[0]];
|
|
// \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
|
|
ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
|
|
j[0] = (j[0] + 1)%m;
|
|
}
|
|
|
|
step[0] = 1.0;
|
|
}
|
|
|
|
return GGML_OPT_DID_NOT_CONVERGE;
|
|
}
|
|
|
|
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
|
|
struct ggml_opt_params result;
|
|
|
|
switch (type) {
|
|
case GGML_OPT_ADAM:
|
|
{
|
|
result = (struct ggml_opt_params) {
|
|
.type = GGML_OPT_ADAM,
|
|
.n_threads = 1,
|
|
.past = 0,
|
|
.delta = 1e-5f,
|
|
|
|
.max_no_improvement = 100,
|
|
|
|
.print_forward_graph = true,
|
|
.print_backward_graph = true,
|
|
|
|
.adam = {
|
|
.n_iter = 10000,
|
|
.sched = 1.000f,
|
|
.decay = 0.001f,
|
|
.alpha = 0.001f,
|
|
.beta1 = 0.9f,
|
|
.beta2 = 0.999f,
|
|
.eps = 1e-8f,
|
|
.eps_f = 1e-5f,
|
|
.eps_g = 1e-3f,
|
|
},
|
|
};
|
|
} break;
|
|
case GGML_OPT_LBFGS:
|
|
{
|
|
result = (struct ggml_opt_params) {
|
|
.type = GGML_OPT_LBFGS,
|
|
.n_threads = 1,
|
|
.past = 0,
|
|
.delta = 1e-5f,
|
|
|
|
.max_no_improvement = 0,
|
|
|
|
.print_forward_graph = true,
|
|
.print_backward_graph = true,
|
|
|
|
.lbfgs = {
|
|
.m = 6,
|
|
.n_iter = 100,
|
|
.max_linesearch = 20,
|
|
|
|
.eps = 1e-5f,
|
|
.ftol = 1e-4f,
|
|
.wolfe = 0.9f,
|
|
.min_step = 1e-20f,
|
|
.max_step = 1e+20f,
|
|
|
|
.linesearch = GGML_LINESEARCH_DEFAULT,
|
|
},
|
|
};
|
|
} break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
GGML_API void ggml_opt_init(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_opt_params params,
|
|
int64_t nx) {
|
|
opt->ctx = ctx;
|
|
opt->params = params;
|
|
opt->iter = 0;
|
|
opt->nx = nx;
|
|
opt->just_initialized = true;
|
|
switch (opt->params.type) {
|
|
case GGML_OPT_ADAM:
|
|
{
|
|
opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->adam.pf = params.past > 0
|
|
? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
|
|
: NULL;
|
|
ggml_set_zero(opt->adam.x);
|
|
ggml_set_zero(opt->adam.g1);
|
|
ggml_set_zero(opt->adam.g2);
|
|
ggml_set_zero(opt->adam.m);
|
|
ggml_set_zero(opt->adam.v);
|
|
ggml_set_zero(opt->adam.mh);
|
|
ggml_set_zero(opt->adam.vh);
|
|
if (opt->adam.pf) {
|
|
ggml_set_zero(opt->adam.pf);
|
|
}
|
|
} break;
|
|
case GGML_OPT_LBFGS:
|
|
{
|
|
opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
|
|
opt->lbfgs.pf = params.past > 0
|
|
? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
|
|
: NULL;
|
|
opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
|
|
opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
|
|
opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
|
|
opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
|
|
ggml_set_zero(opt->lbfgs.x);
|
|
ggml_set_zero(opt->lbfgs.xp);
|
|
ggml_set_zero(opt->lbfgs.g);
|
|
ggml_set_zero(opt->lbfgs.gp);
|
|
ggml_set_zero(opt->lbfgs.d);
|
|
ggml_set_zero(opt->lbfgs.pf);
|
|
if (opt->lbfgs.pf) {
|
|
ggml_set_zero(opt->lbfgs.pf);
|
|
}
|
|
ggml_set_zero(opt->lbfgs.lmal);
|
|
ggml_set_zero(opt->lbfgs.lmys);
|
|
ggml_set_zero(opt->lbfgs.lms);
|
|
ggml_set_zero(opt->lbfgs.lmy);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
enum ggml_opt_result ggml_opt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f) {
|
|
bool free_ctx = false;
|
|
if (ctx == NULL) {
|
|
struct ggml_init_params params_ctx = {
|
|
.mem_size = 16*1024*1024,
|
|
.mem_buffer = NULL,
|
|
.no_alloc = false,
|
|
};
|
|
|
|
ctx = ggml_init(params_ctx);
|
|
if (ctx == NULL) {
|
|
return GGML_OPT_NO_CONTEXT;
|
|
}
|
|
|
|
free_ctx = true;
|
|
}
|
|
|
|
enum ggml_opt_result result = GGML_OPT_OK;
|
|
|
|
struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
|
|
|
|
ggml_opt_init(ctx, opt, params, 0);
|
|
result = ggml_opt_resume(ctx, opt, f);
|
|
|
|
if (free_ctx) {
|
|
ggml_free(ctx);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
enum ggml_opt_result ggml_opt_resume(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f) {
|
|
|
|
// build forward + backward compute graphs
|
|
struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
|
|
struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
|
|
|
|
struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
|
|
struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
|
|
|
|
*gf = ggml_build_forward (f);
|
|
*gb = ggml_build_backward(ctx, gf, true);
|
|
|
|
return ggml_opt_resume_g(ctx, opt, f, gf, gb);
|
|
}
|
|
|
|
enum ggml_opt_result ggml_opt_resume_g(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb) {
|
|
|
|
// build forward + backward compute graphs
|
|
enum ggml_opt_result result = GGML_OPT_OK;
|
|
|
|
switch (opt->params.type) {
|
|
case GGML_OPT_ADAM:
|
|
{
|
|
result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
|
|
} break;
|
|
case GGML_OPT_LBFGS:
|
|
{
|
|
result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
|
|
} break;
|
|
}
|
|
|
|
if (opt->params.print_forward_graph) {
|
|
ggml_graph_print (gf);
|
|
ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
|
|
}
|
|
|
|
if (opt->params.print_backward_graph) {
|
|
ggml_graph_print (gb);
|
|
ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
|
assert(k % QK4_0 == 0);
|
|
const int nb = k / QK4_0;
|
|
|
|
for (int b = 0; b < n; b += k) {
|
|
block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
|
|
|
|
quantize_row_q4_0_reference(src + b, y, k);
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
for (int j = 0; j < QK4_0; j += 2) {
|
|
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
|
|
const uint8_t vi1 = y[i].qs[j/2] >> 4;
|
|
|
|
hist[vi0]++;
|
|
hist[vi1]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/QK4_0*sizeof(block_q4_0));
|
|
}
|
|
|
|
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
|
|
assert(k % QK4_1 == 0);
|
|
const int nb = k / QK4_1;
|
|
|
|
for (int b = 0; b < n; b += k) {
|
|
block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
|
|
|
|
quantize_row_q4_1_reference(src + b, y, k);
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
for (int j = 0; j < QK4_1; j += 2) {
|
|
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
|
|
const uint8_t vi1 = y[i].qs[j/2] >> 4;
|
|
|
|
hist[vi0]++;
|
|
hist[vi1]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/QK4_1*sizeof(block_q4_1));
|
|
}
|
|
|
|
size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
|
assert(k % QK5_0 == 0);
|
|
const int nb = k / QK5_0;
|
|
|
|
for (int b = 0; b < n; b += k) {
|
|
block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
|
|
|
|
quantize_row_q5_0_reference(src + b, y, k);
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
uint32_t qh;
|
|
memcpy(&qh, &y[i].qh, sizeof(qh));
|
|
|
|
for (int j = 0; j < QK5_0; j += 2) {
|
|
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
|
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
|
|
|
// cast to 16 bins
|
|
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
|
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
|
|
|
|
hist[vi0]++;
|
|
hist[vi1]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/QK5_0*sizeof(block_q5_0));
|
|
}
|
|
|
|
size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
|
|
assert(k % QK5_1 == 0);
|
|
const int nb = k / QK5_1;
|
|
|
|
for (int b = 0; b < n; b += k) {
|
|
block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
|
|
|
|
quantize_row_q5_1_reference(src + b, y, k);
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
uint32_t qh;
|
|
memcpy(&qh, &y[i].qh, sizeof(qh));
|
|
|
|
for (int j = 0; j < QK5_1; j += 2) {
|
|
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
|
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
|
|
|
// cast to 16 bins
|
|
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
|
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
|
|
|
|
hist[vi0]++;
|
|
hist[vi1]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/QK5_1*sizeof(block_q5_1));
|
|
}
|
|
|
|
size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
|
assert(k % QK8_0 == 0);
|
|
const int nb = k / QK8_0;
|
|
|
|
for (int b = 0; b < n; b += k) {
|
|
block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
|
|
|
|
quantize_row_q8_0_reference(src + b, y, k);
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
for (int j = 0; j < QK8_0; ++j) {
|
|
const int8_t vi = y[i].qs[j];
|
|
|
|
hist[vi/16 + 8]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/QK8_0*sizeof(block_q8_0));
|
|
}
|
|
|
|
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
|
|
size_t result = 0;
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
GGML_ASSERT(start % QK4_0 == 0);
|
|
block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
|
|
result = ggml_quantize_q4_0(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
GGML_ASSERT(start % QK4_1 == 0);
|
|
block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
|
|
result = ggml_quantize_q4_1(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
GGML_ASSERT(start % QK5_0 == 0);
|
|
block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
|
|
result = ggml_quantize_q5_0(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
GGML_ASSERT(start % QK5_1 == 0);
|
|
block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
|
|
result = ggml_quantize_q5_1(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
GGML_ASSERT(start % QK8_0 == 0);
|
|
block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
|
|
result = ggml_quantize_q8_0(src + start, block, n, n, hist);
|
|
} break;
|
|
#ifdef GGML_USE_K_QUANTS
|
|
case GGML_TYPE_Q2_K:
|
|
{
|
|
GGML_ASSERT(start % QK_K == 0);
|
|
block_q2_K * block = (block_q2_K*)dst + start / QK_K;
|
|
result = ggml_quantize_q2_K(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q3_K:
|
|
{
|
|
GGML_ASSERT(start % QK_K == 0);
|
|
block_q3_K * block = (block_q3_K*)dst + start / QK_K;
|
|
result = ggml_quantize_q3_K(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q4_K:
|
|
{
|
|
GGML_ASSERT(start % QK_K == 0);
|
|
block_q4_K * block = (block_q4_K*)dst + start / QK_K;
|
|
result = ggml_quantize_q4_K(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q5_K:
|
|
{
|
|
GGML_ASSERT(start % QK_K == 0);
|
|
block_q5_K * block = (block_q5_K*)dst + start / QK_K;
|
|
result = ggml_quantize_q5_K(src + start, block, n, n, hist);
|
|
} break;
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
GGML_ASSERT(start % QK_K == 0);
|
|
block_q6_K * block = (block_q6_K*)dst + start / QK_K;
|
|
result = ggml_quantize_q6_K(src + start, block, n, n, hist);
|
|
} break;
|
|
#endif
|
|
case GGML_TYPE_F16:
|
|
{
|
|
int elemsize = sizeof(ggml_fp16_t);
|
|
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
|
|
result = n * elemsize;
|
|
} break;
|
|
case GGML_TYPE_F32:
|
|
{
|
|
int elemsize = sizeof(float);
|
|
result = n * elemsize;
|
|
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
|
|
} break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int ggml_cpu_has_avx(void) {
|
|
#if defined(__AVX__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_avx2(void) {
|
|
#if defined(__AVX2__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_avx512(void) {
|
|
#if defined(__AVX512F__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_avx512_vbmi(void) {
|
|
#if defined(__AVX512VBMI__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_avx512_vnni(void) {
|
|
#if defined(__AVX512VNNI__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_fma(void) {
|
|
#if defined(__FMA__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_neon(void) {
|
|
#if defined(__ARM_NEON)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_arm_fma(void) {
|
|
#if defined(__ARM_FEATURE_FMA)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_f16c(void) {
|
|
#if defined(__F16C__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_fp16_va(void) {
|
|
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_wasm_simd(void) {
|
|
#if defined(__wasm_simd128__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_blas(void) {
|
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_cublas(void) {
|
|
#if defined(GGML_USE_CUBLAS)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_clblast(void) {
|
|
#if defined(GGML_USE_CLBLAST)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_gpublas(void) {
|
|
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
|
|
}
|
|
|
|
int ggml_cpu_has_sse3(void) {
|
|
#if defined(__SSE3__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int ggml_cpu_has_vsx(void) {
|
|
#if defined(__POWER9_VECTOR__)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|