2024-02-06 06:21:17 -08:00
|
|
|
import traceback
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import torch
|
2024-12-17 15:43:48 -05:00
|
|
|
|
2024-02-06 06:21:17 -08:00
|
|
|
from exllamav2 import (
|
|
|
|
ExLlamaV2,
|
|
|
|
ExLlamaV2Cache,
|
|
|
|
ExLlamaV2Cache_8bit,
|
2024-03-06 23:02:25 -03:00
|
|
|
ExLlamaV2Cache_Q4,
|
2024-12-17 15:43:48 -05:00
|
|
|
ExLlamaV2Cache_Q6,
|
|
|
|
ExLlamaV2Cache_Q8,
|
2024-09-27 23:26:03 -04:00
|
|
|
ExLlamaV2Cache_TP,
|
2024-02-06 06:21:17 -08:00
|
|
|
ExLlamaV2Config,
|
|
|
|
ExLlamaV2Tokenizer
|
|
|
|
)
|
|
|
|
from exllamav2.generator import ExLlamaV2Sampler, ExLlamaV2StreamingGenerator
|
|
|
|
from modules import shared
|
|
|
|
from modules.logging_colors import logger
|
|
|
|
from modules.text_generation import get_max_prompt_length
|
|
|
|
|
|
|
|
try:
|
|
|
|
import flash_attn
|
|
|
|
except Exception:
|
|
|
|
logger.warning('Failed to load flash-attention due to the following error:\n')
|
|
|
|
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
|
|
class Exllamav2Model:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_pretrained(self, path_to_model):
|
|
|
|
|
|
|
|
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
|
|
|
|
|
|
|
|
config = ExLlamaV2Config()
|
|
|
|
config.model_dir = str(path_to_model)
|
|
|
|
config.prepare()
|
|
|
|
|
|
|
|
config.max_seq_len = shared.args.max_seq_len
|
|
|
|
config.scale_pos_emb = shared.args.compress_pos_emb
|
|
|
|
config.scale_alpha_value = shared.args.alpha_value
|
|
|
|
config.no_flash_attn = shared.args.no_flash_attn
|
2024-07-11 15:47:37 -07:00
|
|
|
config.no_xformers = shared.args.no_xformers
|
|
|
|
config.no_sdpa = shared.args.no_sdpa
|
2024-02-06 06:21:17 -08:00
|
|
|
config.num_experts_per_token = int(shared.args.num_experts_per_token)
|
|
|
|
|
|
|
|
model = ExLlamaV2(config)
|
|
|
|
|
2024-09-27 23:26:03 -04:00
|
|
|
split = None
|
|
|
|
if shared.args.gpu_split:
|
|
|
|
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
|
2024-02-16 15:26:10 -03:00
|
|
|
|
2024-09-27 23:26:03 -04:00
|
|
|
if shared.args.enable_tp:
|
|
|
|
model.load_tp(split)
|
|
|
|
elif not shared.args.autosplit:
|
2024-02-16 15:26:10 -03:00
|
|
|
model.load(split)
|
|
|
|
|
2024-09-27 23:26:03 -04:00
|
|
|
# Determine the correct cache type
|
2024-12-17 19:44:20 -08:00
|
|
|
kv_cache_type = shared.args.cache_type.lower()
|
2024-12-17 15:43:48 -05:00
|
|
|
|
|
|
|
if kv_cache_type == 'fp16':
|
|
|
|
cache_type = ExLlamaV2Cache
|
|
|
|
elif kv_cache_type == 'fp8':
|
2024-09-27 23:26:03 -04:00
|
|
|
cache_type = ExLlamaV2Cache_8bit
|
2024-12-17 15:43:48 -05:00
|
|
|
elif kv_cache_type == 'q8':
|
|
|
|
cache_type = ExLlamaV2Cache_Q8
|
|
|
|
elif kv_cache_type == 'q6':
|
|
|
|
cache_type = ExLlamaV2Cache_Q6
|
|
|
|
elif kv_cache_type == 'q4':
|
2024-09-27 23:26:03 -04:00
|
|
|
cache_type = ExLlamaV2Cache_Q4
|
2024-02-17 12:42:22 -08:00
|
|
|
else:
|
2024-12-17 15:43:48 -05:00
|
|
|
raise ValueError(f"Invalid cache type for ExLlamaV2: {cache_type}. Valid options are: fp16, fp8, q8, q6, q4.")
|
2024-02-17 12:42:22 -08:00
|
|
|
|
2024-09-27 23:26:03 -04:00
|
|
|
# Use TP if specified
|
|
|
|
if shared.args.enable_tp:
|
|
|
|
cache = ExLlamaV2Cache_TP(model, base=cache_type)
|
|
|
|
else:
|
|
|
|
cache = cache_type(model, lazy=shared.args.autosplit)
|
|
|
|
|
|
|
|
if shared.args.autosplit and not shared.args.enable_tp:
|
2024-02-17 12:42:22 -08:00
|
|
|
model.load_autosplit(cache)
|
|
|
|
|
2024-02-16 15:26:10 -03:00
|
|
|
tokenizer = ExLlamaV2Tokenizer(config)
|
2024-02-06 06:21:17 -08:00
|
|
|
generator = ExLlamaV2StreamingGenerator(model, cache, tokenizer)
|
|
|
|
|
|
|
|
result = self()
|
|
|
|
result.model = model
|
|
|
|
result.cache = cache
|
|
|
|
result.tokenizer = tokenizer
|
|
|
|
result.generator = generator
|
|
|
|
result.loras = None
|
|
|
|
return result, result
|
|
|
|
|
|
|
|
def encode(self, string, **kwargs):
|
|
|
|
return self.tokenizer.encode(string, add_bos=True, encode_special_tokens=True)
|
|
|
|
|
|
|
|
def decode(self, ids, **kwargs):
|
|
|
|
if isinstance(ids, list):
|
|
|
|
ids = torch.tensor([ids])
|
|
|
|
elif isinstance(ids, torch.Tensor) and ids.numel() == 1:
|
|
|
|
ids = ids.view(1, -1)
|
|
|
|
|
|
|
|
return self.tokenizer.decode(ids, decode_special_tokens=True)[0]
|
|
|
|
|
|
|
|
def get_logits(self, token_ids, **kwargs):
|
|
|
|
self.cache.current_seq_len = 0
|
|
|
|
if token_ids.shape[-1] > 1:
|
|
|
|
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True, loras=self.loras)
|
|
|
|
|
|
|
|
return self.model.forward(token_ids[:, -1:], self.cache, input_mask=None, loras=self.loras, **kwargs).float().cpu()
|
|
|
|
|
|
|
|
def generate_with_streaming(self, prompt, state):
|
|
|
|
settings = ExLlamaV2Sampler.Settings()
|
|
|
|
|
|
|
|
settings.token_repetition_penalty = state['repetition_penalty']
|
|
|
|
settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range']
|
|
|
|
|
|
|
|
settings.token_frequency_penalty = state['frequency_penalty']
|
|
|
|
settings.token_presence_penalty = state['presence_penalty']
|
|
|
|
|
|
|
|
settings.temperature = state['temperature']
|
|
|
|
settings.top_k = state['top_k']
|
|
|
|
settings.top_p = state['top_p']
|
|
|
|
settings.top_a = state['top_a']
|
|
|
|
settings.min_p = state['min_p']
|
|
|
|
settings.tfs = state['tfs']
|
|
|
|
settings.typical = state['typical_p']
|
|
|
|
|
|
|
|
settings.temperature_last = state['temperature_last']
|
|
|
|
|
|
|
|
settings.mirostat = state['mirostat_mode'] == 2
|
|
|
|
settings.mirostat_tau = state['mirostat_tau']
|
|
|
|
settings.mirostat_eta = state['mirostat_eta']
|
|
|
|
|
|
|
|
if state['ban_eos_token']:
|
|
|
|
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
|
|
|
|
|
|
|
|
if state['custom_token_bans']:
|
|
|
|
to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
|
|
|
|
if len(to_ban) > 0:
|
|
|
|
settings.disallow_tokens(self.tokenizer, to_ban)
|
|
|
|
|
|
|
|
ids = self.tokenizer.encode(prompt, add_bos=state['add_bos_token'], encode_special_tokens=True)
|
|
|
|
ids = ids[:, -get_max_prompt_length(state):]
|
|
|
|
|
|
|
|
if state['auto_max_new_tokens']:
|
|
|
|
max_new_tokens = state['truncation_length'] - ids.shape[-1]
|
|
|
|
else:
|
|
|
|
max_new_tokens = state['max_new_tokens']
|
|
|
|
|
|
|
|
self.generator.begin_stream(ids, settings, loras=self.loras)
|
|
|
|
|
|
|
|
decoded_text = ''
|
|
|
|
for i in range(max_new_tokens):
|
|
|
|
chunk, eos, _ = self.generator.stream()
|
|
|
|
if eos or shared.stop_everything:
|
|
|
|
break
|
|
|
|
|
|
|
|
decoded_text += chunk
|
|
|
|
yield decoded_text
|
|
|
|
|
|
|
|
def generate(self, prompt, state):
|
|
|
|
output = ''
|
|
|
|
for output in self.generate_with_streaming(prompt, state):
|
|
|
|
pass
|
|
|
|
|
|
|
|
return output
|