2023-01-06 23:57:31 +01:00
|
|
|
'''
|
|
|
|
Downloads models from Hugging Face to models/model-name.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
python download-model.py facebook/opt-1.3b
|
|
|
|
|
|
|
|
'''
|
2023-02-10 19:40:03 +01:00
|
|
|
import argparse
|
2023-01-06 23:57:31 +01:00
|
|
|
import multiprocessing
|
2023-02-10 19:40:03 +01:00
|
|
|
import re
|
2023-01-20 21:51:56 +01:00
|
|
|
import sys
|
2023-01-07 20:33:43 +01:00
|
|
|
from pathlib import Path
|
2023-02-10 19:40:03 +01:00
|
|
|
|
|
|
|
import requests
|
|
|
|
import tqdm
|
|
|
|
from bs4 import BeautifulSoup
|
2023-01-20 21:51:56 +01:00
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('MODEL', type=str)
|
|
|
|
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
|
2023-02-03 22:57:12 +01:00
|
|
|
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
|
2023-02-12 04:42:56 +01:00
|
|
|
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
|
2023-01-20 21:51:56 +01:00
|
|
|
args = parser.parse_args()
|
2023-01-06 23:57:31 +01:00
|
|
|
|
|
|
|
def get_file(args):
|
|
|
|
url = args[0]
|
|
|
|
output_folder = args[1]
|
2023-02-03 22:57:12 +01:00
|
|
|
idx = args[2]
|
|
|
|
tot = args[3]
|
2023-01-06 23:57:31 +01:00
|
|
|
|
2023-02-03 22:57:12 +01:00
|
|
|
print(f"Downloading file {idx} of {tot}...")
|
2023-01-06 23:57:31 +01:00
|
|
|
r = requests.get(url, stream=True)
|
2023-01-07 20:33:43 +01:00
|
|
|
with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
|
2023-01-06 23:57:31 +01:00
|
|
|
total_size = int(r.headers.get('content-length', 0))
|
|
|
|
block_size = 1024
|
|
|
|
t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
|
|
|
|
for data in r.iter_content(block_size):
|
|
|
|
t.update(len(data))
|
|
|
|
f.write(data)
|
|
|
|
t.close()
|
|
|
|
|
2023-01-20 21:51:56 +01:00
|
|
|
def sanitize_branch_name(branch_name):
|
|
|
|
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
|
|
|
|
if pattern.match(branch_name):
|
|
|
|
return branch_name
|
|
|
|
else:
|
|
|
|
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
|
|
|
|
|
2023-01-13 13:05:21 +01:00
|
|
|
if __name__ == '__main__':
|
2023-01-21 04:43:00 +01:00
|
|
|
model = args.MODEL
|
2023-01-13 13:05:21 +01:00
|
|
|
if model[-1] == '/':
|
|
|
|
model = model[:-1]
|
2023-01-20 21:51:56 +01:00
|
|
|
branch = args.branch
|
|
|
|
if args.branch is None:
|
|
|
|
branch = 'main'
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
branch_name = args.branch
|
|
|
|
branch = sanitize_branch_name(branch_name)
|
|
|
|
except ValueError as err_branch:
|
|
|
|
print(f"Error: {err_branch}")
|
|
|
|
sys.exit()
|
|
|
|
url = f'https://huggingface.co/{model}/tree/{branch}'
|
|
|
|
if branch != 'main':
|
|
|
|
output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}')
|
|
|
|
else:
|
|
|
|
output_folder = Path("models") / model.split('/')[-1]
|
2023-01-13 13:05:21 +01:00
|
|
|
if not output_folder.exists():
|
|
|
|
output_folder.mkdir()
|
|
|
|
|
|
|
|
# Finding the relevant files to download
|
|
|
|
page = requests.get(url)
|
|
|
|
soup = BeautifulSoup(page.content, 'html.parser')
|
|
|
|
links = soup.find_all('a')
|
|
|
|
downloads = []
|
2023-02-12 04:06:22 +01:00
|
|
|
classifications = []
|
|
|
|
has_pytorch = False
|
|
|
|
has_safetensors = False
|
2023-01-13 13:05:21 +01:00
|
|
|
for link in links:
|
|
|
|
href = link.get('href')[1:]
|
2023-01-20 21:51:56 +01:00
|
|
|
if href.startswith(f'{model}/resolve/{branch}'):
|
2023-02-12 04:06:22 +01:00
|
|
|
fname = Path(href).name
|
|
|
|
is_pytorch = re.match("pytorch_model.*\.bin", fname)
|
|
|
|
is_safetensors = re.match("model.*\.safetensors", fname)
|
|
|
|
is_text = re.match(".*\.(txt|json)", fname)
|
|
|
|
|
|
|
|
if is_text or is_safetensors or is_pytorch:
|
|
|
|
if is_text:
|
2023-02-12 04:42:56 +01:00
|
|
|
downloads.append(f'https://huggingface.co/{href}')
|
2023-02-12 04:06:22 +01:00
|
|
|
classifications.append('text')
|
2023-02-12 04:42:56 +01:00
|
|
|
continue
|
|
|
|
if not args.text_only:
|
|
|
|
downloads.append(f'https://huggingface.co/{href}')
|
|
|
|
if is_safetensors:
|
|
|
|
has_safetensors = True
|
|
|
|
classifications.append('safetensors')
|
|
|
|
elif is_pytorch:
|
|
|
|
has_pytorch = True
|
|
|
|
classifications.append('pytorch')
|
2023-02-12 04:06:22 +01:00
|
|
|
|
|
|
|
# If both pytorch and safetensors are available, download safetensors only
|
|
|
|
if has_pytorch and has_safetensors:
|
|
|
|
for i in range(len(classifications)-1, -1, -1):
|
|
|
|
if classifications[i] == 'pytorch':
|
|
|
|
downloads.pop(i)
|
2023-01-13 13:05:21 +01:00
|
|
|
|
|
|
|
# Downloading the files
|
2023-02-03 22:57:12 +01:00
|
|
|
print(f"Downloading the model to {output_folder}")
|
|
|
|
pool = multiprocessing.Pool(processes=args.threads)
|
|
|
|
results = pool.map(get_file, [[downloads[i], output_folder, i+1, len(downloads)] for i in range(len(downloads))])
|
2023-01-13 13:05:21 +01:00
|
|
|
pool.close()
|
|
|
|
pool.join()
|