2023-05-10 01:18:02 +02:00
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from typing import List, Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
2023-10-27 08:09:51 +05:30
|
|
|
from transformers import is_torch_xpu_available
|
2023-05-10 01:18:02 +02:00
|
|
|
|
|
|
|
|
|
|
|
class AbstractMultimodalPipeline(ABC):
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def name() -> str:
|
|
|
|
'name of the pipeline, should be same as in --multimodal-pipeline'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def image_start() -> Optional[str]:
|
|
|
|
'return image start string, string representation of image start token, or None if not applicable'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def image_end() -> Optional[str]:
|
|
|
|
'return image end string, string representation of image end token, or None if not applicable'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def placeholder_token_id() -> int:
|
|
|
|
'return placeholder token id'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def num_image_embeds() -> int:
|
|
|
|
'return the number of embeds used by a single image (for example: 256 for LLaVA)'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def embed_images(self, images: List[Image.Image]) -> torch.Tensor:
|
|
|
|
'forward the images through vision pipeline, and return their embeddings'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor:
|
|
|
|
'embed tokens, the exact function varies by LLM, for LLaMA it is `shared.model.model.embed_tokens`'
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
@abstractmethod
|
|
|
|
def placeholder_embeddings() -> torch.Tensor:
|
|
|
|
'get placeholder embeddings if there are multiple images, and `add_all_images_to_prompt` is False'
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _get_device(self, setting_name: str, params: dict):
|
|
|
|
if params[setting_name] is None:
|
2023-10-27 08:09:51 +05:30
|
|
|
return torch.device("cuda:0" if torch.cuda.is_available() else "xpu:0" if is_torch_xpu_available() else "cpu")
|
2023-05-10 01:18:02 +02:00
|
|
|
return torch.device(params[setting_name])
|
|
|
|
|
|
|
|
def _get_dtype(self, setting_name: str, params: dict):
|
|
|
|
return torch.float32 if int(params[setting_name]) == 32 else torch.float16
|