mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-14 22:39:06 +01:00
177 lines
4.9 KiB
Python
177 lines
4.9 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import requests
|
||
|
|
||
|
HOST = '0.0.0.0:5000'
|
||
|
|
||
|
def generate(prompt, tokens = 200):
|
||
|
request = { 'prompt': prompt, 'max_new_tokens': tokens }
|
||
|
response = requests.post(f'http://{HOST}/api/v1/generate', json=request)
|
||
|
|
||
|
if response.status_code == 200:
|
||
|
return response.json()['results'][0]['text']
|
||
|
|
||
|
|
||
|
def model_api(request):
|
||
|
response = requests.post(f'http://{HOST}/api/v1/model', json=request)
|
||
|
return response.json()
|
||
|
|
||
|
|
||
|
# print some common settings
|
||
|
def print_basic_model_info(response):
|
||
|
basic_settings = ['truncation_length', 'instruction_template']
|
||
|
print("Model: ", response['result']['model_name'])
|
||
|
print("Lora(s): ", response['result']['lora_names'])
|
||
|
for setting in basic_settings:
|
||
|
print(setting, "=", response['result']['shared.settings'][setting])
|
||
|
|
||
|
|
||
|
# model info
|
||
|
def model_info():
|
||
|
response = model_api({'action': 'info'})
|
||
|
print_basic_model_info(response)
|
||
|
|
||
|
|
||
|
# simple loader
|
||
|
def model_load(model_name):
|
||
|
return model_api({'action': 'load', 'model_name': model_name})
|
||
|
|
||
|
|
||
|
# complex loader
|
||
|
def complex_model_load(model):
|
||
|
|
||
|
def guess_groupsize(model_name):
|
||
|
if '1024g' in model_name:
|
||
|
return 1024
|
||
|
elif '128g' in model_name:
|
||
|
return 128
|
||
|
elif '32g' in model_name:
|
||
|
return 32
|
||
|
else:
|
||
|
return -1
|
||
|
|
||
|
req = {
|
||
|
'action': 'load',
|
||
|
'model_name': model,
|
||
|
'args': {
|
||
|
'gptq_for_llama': False, # Use AutoGPTQ by default, set to True for gptq-for-llama
|
||
|
|
||
|
'bf16': False,
|
||
|
'load_in_8bit': False,
|
||
|
'groupsize': 0,
|
||
|
'wbits': 0,
|
||
|
|
||
|
# llama.cpp
|
||
|
'threads': 0,
|
||
|
'n_batch': 512,
|
||
|
'no_mmap': False,
|
||
|
'mlock': False,
|
||
|
'cache_capacity': None,
|
||
|
'n_gpu_layers': 0,
|
||
|
'n_ctx': 2048,
|
||
|
|
||
|
# RWKV
|
||
|
'rwkv_strategy': None,
|
||
|
'rwkv_cuda_on': False,
|
||
|
|
||
|
# b&b 4-bit
|
||
|
#'load_in_4bit': False,
|
||
|
#'compute_dtype': 'float16',
|
||
|
#'quant_type': 'nf4',
|
||
|
#'use_double_quant': False,
|
||
|
|
||
|
#"cpu": false,
|
||
|
#"auto_devices": false,
|
||
|
#"gpu_memory": null,
|
||
|
#"cpu_memory": null,
|
||
|
#"disk": false,
|
||
|
#"disk_cache_dir": "cache",
|
||
|
},
|
||
|
}
|
||
|
|
||
|
model = model.lower()
|
||
|
|
||
|
if '4bit' in model or 'gptq' in model or 'int4' in model:
|
||
|
req['args']['wbits'] = 4
|
||
|
req['args']['groupsize'] = guess_groupsize(model)
|
||
|
elif '3bit' in model:
|
||
|
req['args']['wbits'] = 3
|
||
|
req['args']['groupsize'] = guess_groupsize(model)
|
||
|
else:
|
||
|
req['args']['gptq_for_llama'] = False
|
||
|
|
||
|
if '8bit' in model:
|
||
|
req['args']['load_in_8bit'] = True
|
||
|
elif '-hf' in model or 'fp16' in model:
|
||
|
if '7b' in model:
|
||
|
req['args']['bf16'] = True # for 24GB
|
||
|
elif '13b' in model:
|
||
|
req['args']['load_in_8bit'] = True # for 24GB
|
||
|
elif 'ggml' in model:
|
||
|
#req['args']['threads'] = 16
|
||
|
if '7b' in model:
|
||
|
req['args']['n_gpu_layers'] = 100
|
||
|
elif '13b' in model:
|
||
|
req['args']['n_gpu_layers'] = 100
|
||
|
elif '30b' in model or '33b' in model:
|
||
|
req['args']['n_gpu_layers'] = 59 # 24GB
|
||
|
elif '65b' in model:
|
||
|
req['args']['n_gpu_layers'] = 42 # 24GB
|
||
|
elif 'rwkv' in model:
|
||
|
req['args']['rwkv_cuda_on'] = True
|
||
|
if '14b' in model:
|
||
|
req['args']['rwkv_strategy'] = 'cuda f16i8' # 24GB
|
||
|
else:
|
||
|
req['args']['rwkv_strategy'] = 'cuda f16' # 24GB
|
||
|
|
||
|
|
||
|
return model_api(req)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
for model in model_api({'action': 'list'})['result']:
|
||
|
try:
|
||
|
resp = complex_model_load(model)
|
||
|
|
||
|
if 'error' in resp:
|
||
|
print (f"❌ {model} FAIL Error: {resp['error']['message']}")
|
||
|
continue
|
||
|
else:
|
||
|
print_basic_model_info(resp)
|
||
|
|
||
|
ans = generate("0,1,1,2,3,5,8,13,", tokens=2)
|
||
|
|
||
|
if '21' in ans:
|
||
|
print (f"✅ {model} PASS ({ans})")
|
||
|
else:
|
||
|
print (f"❌ {model} FAIL ({ans})")
|
||
|
|
||
|
except Exception as e:
|
||
|
print (f"❌ {model} FAIL Exception: {repr(e)}")
|
||
|
|
||
|
|
||
|
# 0,1,1,2,3,5,8,13, is the fibonacci sequence, the next number is 21.
|
||
|
# Some results below.
|
||
|
""" $ ./model-api-example.py
|
||
|
Model: 4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda
|
||
|
Lora(s): []
|
||
|
truncation_length = 2048
|
||
|
instruction_template = Alpaca
|
||
|
✅ 4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda PASS (21)
|
||
|
Model: 4bit_WizardLM-13B-Uncensored-4bit-128g
|
||
|
Lora(s): []
|
||
|
truncation_length = 2048
|
||
|
instruction_template = WizardLM
|
||
|
✅ 4bit_WizardLM-13B-Uncensored-4bit-128g PASS (21)
|
||
|
Model: Aeala_VicUnlocked-alpaca-30b-4bit
|
||
|
Lora(s): []
|
||
|
truncation_length = 2048
|
||
|
instruction_template = Alpaca
|
||
|
✅ Aeala_VicUnlocked-alpaca-30b-4bit PASS (21)
|
||
|
Model: alpaca-30b-4bit
|
||
|
Lora(s): []
|
||
|
truncation_length = 2048
|
||
|
instruction_template = Alpaca
|
||
|
✅ alpaca-30b-4bit PASS (21)
|
||
|
"""
|