mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 19:09:32 +01:00
97 lines
2.9 KiB
Python
97 lines
2.9 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||
|
|
||
|
import json
|
||
|
import os
|
||
|
import sys
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
from typing import Tuple
|
||
|
|
||
|
import fire
|
||
|
import torch
|
||
|
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
||
|
from llama import LLaMA, ModelArgs, Tokenizer, Transformer
|
||
|
|
||
|
os.environ['RANK'] = '0'
|
||
|
os.environ['WORLD_SIZE'] = '1'
|
||
|
os.environ['MP'] = '1'
|
||
|
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
||
|
os.environ['MASTER_PORT'] = '2223'
|
||
|
|
||
|
def setup_model_parallel() -> Tuple[int, int]:
|
||
|
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||
|
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
||
|
|
||
|
torch.distributed.init_process_group("gloo")
|
||
|
initialize_model_parallel(world_size)
|
||
|
torch.cuda.set_device(local_rank)
|
||
|
|
||
|
# seed must be the same in all processes
|
||
|
torch.manual_seed(1)
|
||
|
return local_rank, world_size
|
||
|
|
||
|
def load(
|
||
|
ckpt_dir: str,
|
||
|
tokenizer_path: str,
|
||
|
local_rank: int,
|
||
|
world_size: int,
|
||
|
max_seq_len: int,
|
||
|
max_batch_size: int,
|
||
|
) -> LLaMA:
|
||
|
start_time = time.time()
|
||
|
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||
|
assert world_size == len(
|
||
|
checkpoints
|
||
|
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
|
||
|
ckpt_path = checkpoints[local_rank]
|
||
|
print("Loading")
|
||
|
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||
|
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||
|
params = json.loads(f.read())
|
||
|
|
||
|
model_args: ModelArgs = ModelArgs(
|
||
|
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||
|
)
|
||
|
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||
|
model_args.vocab_size = tokenizer.n_words
|
||
|
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||
|
model = Transformer(model_args)
|
||
|
torch.set_default_tensor_type(torch.FloatTensor)
|
||
|
model.load_state_dict(checkpoint, strict=False)
|
||
|
|
||
|
generator = LLaMA(model, tokenizer)
|
||
|
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||
|
return generator
|
||
|
|
||
|
|
||
|
class LLaMAModel:
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(self, path, max_seq_len=512, max_batch_size=32):
|
||
|
tokenizer_path = path / "tokenizer.model"
|
||
|
path = os.path.abspath(path)
|
||
|
tokenizer_path = os.path.abspath(tokenizer_path)
|
||
|
|
||
|
local_rank, world_size = setup_model_parallel()
|
||
|
if local_rank > 0:
|
||
|
sys.stdout = open(os.devnull, "w")
|
||
|
|
||
|
generator = load(
|
||
|
path, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
|
||
|
)
|
||
|
|
||
|
result = self()
|
||
|
result.pipeline = generator
|
||
|
return result
|
||
|
|
||
|
def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
|
||
|
|
||
|
results = self.pipeline.generate(
|
||
|
[prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
|
||
|
)
|
||
|
|
||
|
return results[0]
|