2023-08-21 01:49:21 +02:00
|
|
|
import torch
|
2023-10-27 04:39:51 +02:00
|
|
|
from transformers import is_torch_xpu_available
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
from modules import sampler_hijack, shared
|
2023-09-17 15:42:32 +02:00
|
|
|
from modules.logging_colors import logger
|
2023-08-23 05:18:16 +02:00
|
|
|
from modules.text_generation import generate_reply
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
global_scores = None
|
2023-08-21 01:49:21 +02:00
|
|
|
|
|
|
|
|
2023-11-19 03:19:31 +01:00
|
|
|
def get_next_logits(prompt, state, use_samplers, previous, return_dict=False):
|
2023-09-17 15:42:32 +02:00
|
|
|
if shared.model is None:
|
|
|
|
logger.error("No model is loaded! Select one in the Model tab.")
|
|
|
|
return 'Error: No model is loaded1 Select one in the Model tab.', previous
|
|
|
|
|
2023-09-18 03:00:32 +02:00
|
|
|
is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model'
|
|
|
|
is_non_hf_exllamav1 = shared.model.__class__.__name__ == 'ExllamaModel'
|
|
|
|
is_non_hf_llamacpp = shared.model.__class__.__name__ == 'LlamaCppModel'
|
2023-09-17 15:42:32 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
if use_samplers:
|
2023-09-17 15:42:32 +02:00
|
|
|
if any([is_non_hf_exllamav2, is_non_hf_exllamav1, is_non_hf_llamacpp]):
|
|
|
|
logger.error("Sampler hijacking is not supported non-Huggingface loaders.")
|
|
|
|
# sampling is all done in c for exllama, so it is really hard to hijack
|
|
|
|
# it should be possible to hijack llamacpp sampler by hijacking all their sampling methods,
|
|
|
|
# but it is not implemented yet
|
|
|
|
return 'Error: Sampler hijacking is not supported non-Huggingface loaders. Please disable the "Use samplers" option.', previous
|
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
state['max_new_tokens'] = 1
|
|
|
|
state['auto_max_new_tokens'] = False
|
|
|
|
for _ in generate_reply(prompt, state):
|
|
|
|
pass
|
|
|
|
|
|
|
|
scores = sampler_hijack.global_scores[-1]
|
|
|
|
else:
|
2023-09-17 15:42:32 +02:00
|
|
|
if is_non_hf_exllamav2 or is_non_hf_exllamav1:
|
2023-10-27 04:39:51 +02:00
|
|
|
if is_torch_xpu_available():
|
|
|
|
tokens = shared.tokenizer.encode(prompt).to("xpu:0")
|
|
|
|
else:
|
|
|
|
tokens = shared.tokenizer.encode(prompt).cuda()
|
2023-09-17 15:42:32 +02:00
|
|
|
scores = shared.model.get_logits(tokens)[-1][-1]
|
|
|
|
elif is_non_hf_llamacpp:
|
|
|
|
tokens = shared.tokenizer.encode(prompt)
|
|
|
|
scores = shared.model.get_logits(tokens)[-1][-1]
|
|
|
|
else:
|
2023-10-27 04:39:51 +02:00
|
|
|
if is_torch_xpu_available():
|
|
|
|
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').to("xpu:0")
|
|
|
|
else:
|
|
|
|
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda()
|
2023-09-17 15:42:32 +02:00
|
|
|
output = shared.model(input_ids=tokens)
|
|
|
|
scores = output['logits'][-1][-1]
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
|
2023-09-17 16:01:34 +02:00
|
|
|
topk_values, topk_indices = torch.topk(probs, k=50, largest=True, sorted=True)
|
2023-08-23 05:18:16 +02:00
|
|
|
topk_values = [f"{float(i):.5f}" for i in topk_values]
|
2023-09-17 15:42:32 +02:00
|
|
|
if is_non_hf_exllamav1 or is_non_hf_llamacpp:
|
|
|
|
topk_indices = [i.expand((1, 1)) for i in topk_indices]
|
|
|
|
|
2023-08-23 05:35:12 +02:00
|
|
|
tokens = [shared.tokenizer.decode(i) for i in topk_indices]
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-11-19 03:19:31 +01:00
|
|
|
if return_dict:
|
|
|
|
output = {}
|
|
|
|
for row in list(zip(topk_values, tokens)):
|
|
|
|
output[row[1]] = row[0]
|
|
|
|
|
|
|
|
return output
|
|
|
|
else:
|
|
|
|
output = ''
|
|
|
|
for row in list(zip(topk_values, tokens)):
|
|
|
|
output += f"{row[0]} - {repr(row[1])}\n"
|
|
|
|
|
|
|
|
return output, previous
|