2023-03-16 21:35:53 -03:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-03-25 01:18:32 -03:00
|
|
|
import torch
|
2023-06-05 23:29:29 -03:00
|
|
|
from auto_gptq import get_gptq_peft_model
|
|
|
|
from auto_gptq.utils.peft_utils import GPTQLoraConfig
|
2023-03-29 22:50:58 -03:00
|
|
|
from peft import PeftModel
|
2023-03-25 01:18:32 -03:00
|
|
|
|
2023-03-16 21:35:53 -03:00
|
|
|
import modules.shared as shared
|
2023-05-21 22:42:34 -03:00
|
|
|
from modules.logging_colors import logger
|
2023-06-05 23:29:29 -03:00
|
|
|
from modules.models import reload_model
|
2023-03-23 21:56:26 -03:00
|
|
|
|
2023-04-07 00:15:45 -03:00
|
|
|
|
2023-04-14 10:52:06 -07:00
|
|
|
def add_lora_to_model(lora_names):
|
|
|
|
prior_set = set(shared.lora_names)
|
|
|
|
added_set = set(lora_names) - prior_set
|
|
|
|
removed_set = prior_set - set(lora_names)
|
2023-04-25 22:58:48 -03:00
|
|
|
shared.lora_names = list(lora_names)
|
2023-03-16 21:35:53 -03:00
|
|
|
|
2023-06-05 23:29:29 -03:00
|
|
|
is_autogptq = 'GPTQForCausalLM' in shared.model.__class__.__name__
|
|
|
|
|
|
|
|
# AutoGPTQ case. It doesn't use the peft functions.
|
|
|
|
# Copied from https://github.com/Ph0rk0z/text-generation-webui-testing
|
|
|
|
if is_autogptq:
|
|
|
|
if len(prior_set) > 0:
|
|
|
|
reload_model()
|
|
|
|
|
|
|
|
if len(shared.lora_names) == 0:
|
|
|
|
return
|
|
|
|
else:
|
|
|
|
if len(shared.lora_names) > 1:
|
|
|
|
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded')
|
|
|
|
|
|
|
|
peft_config = GPTQLoraConfig(
|
|
|
|
inference_mode=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
lora_path = Path(f"{shared.args.lora_dir}/{shared.lora_names[0]}")
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
|
|
|
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path)
|
|
|
|
return
|
|
|
|
|
|
|
|
# Transformers case
|
|
|
|
else:
|
|
|
|
# If no LoRA needs to be added or removed, exit
|
|
|
|
if len(added_set) == 0 and len(removed_set) == 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
# Add a LoRA when another LoRA is already present
|
|
|
|
if len(removed_set) == 0 and len(prior_set) > 0:
|
|
|
|
logger.info(f"Adding the LoRA(s) named {added_set} to the model...")
|
|
|
|
for lora in added_set:
|
|
|
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
# If any LoRA needs to be removed, start over
|
|
|
|
if len(removed_set) > 0:
|
|
|
|
shared.model.disable_adapter()
|
|
|
|
shared.model = shared.model.base_model.model
|
|
|
|
|
|
|
|
if len(lora_names) > 0:
|
|
|
|
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
|
|
|
params = {}
|
|
|
|
if not shared.args.cpu:
|
|
|
|
params['dtype'] = shared.model.dtype
|
|
|
|
if hasattr(shared.model, "hf_device_map"):
|
|
|
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
|
|
|
|
elif shared.args.load_in_8bit:
|
|
|
|
params['device_map'] = {'': 0}
|
|
|
|
|
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), **params)
|
|
|
|
|
|
|
|
for lora in lora_names[1:]:
|
|
|
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
|
|
|
|
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu:
|
|
|
|
shared.model.half()
|
|
|
|
if not hasattr(shared.model, "hf_device_map"):
|
|
|
|
if torch.has_mps:
|
|
|
|
device = torch.device('mps')
|
|
|
|
shared.model = shared.model.to(device)
|
|
|
|
else:
|
|
|
|
shared.model = shared.model.cuda()
|