2023-02-28 04:09:11 +01:00
|
|
|
import os
|
|
|
|
import time
|
|
|
|
import types
|
2023-02-28 03:50:16 +01:00
|
|
|
from pathlib import Path
|
2023-02-28 04:09:11 +01:00
|
|
|
|
2023-02-28 03:50:16 +01:00
|
|
|
import numpy as np
|
2023-02-28 04:09:11 +01:00
|
|
|
import torch
|
|
|
|
|
|
|
|
import modules.shared as shared
|
|
|
|
|
2023-02-28 03:50:16 +01:00
|
|
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
|
|
|
|
|
|
|
os.environ['RWKV_JIT_ON'] = '1'
|
|
|
|
os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster)
|
|
|
|
|
|
|
|
import repositories.ChatRWKV.v2.rwkv as rwkv
|
|
|
|
from rwkv.model import RWKV
|
|
|
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
|
|
|
|
|
|
|
|
2023-02-28 04:09:11 +01:00
|
|
|
def load_RWKV_model(path):
|
|
|
|
print(f'strategy={"cpu" if shared.args.cpu else "cuda"} {"fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16"}')
|
2023-02-28 03:50:16 +01:00
|
|
|
|
2023-02-28 04:09:11 +01:00
|
|
|
model = RWKV(model=path.as_posix(), strategy=f'{"cpu" if shared.args.cpu else "cuda"} {"fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16"}')
|
2023-02-28 03:50:16 +01:00
|
|
|
pipeline = PIPELINE(model, Path("repositories/ChatRWKV/20B_tokenizer.json").as_posix())
|
|
|
|
|
|
|
|
return pipeline
|