2023-08-21 01:49:21 +02:00
|
|
|
import torch
|
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
from modules import sampler_hijack, shared
|
|
|
|
from modules.text_generation import generate_reply
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
global_scores = None
|
2023-08-21 01:49:21 +02:00
|
|
|
|
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
def get_next_logits(prompt, state, use_samplers, previous):
|
|
|
|
if use_samplers:
|
|
|
|
state['max_new_tokens'] = 1
|
|
|
|
state['auto_max_new_tokens'] = False
|
|
|
|
for _ in generate_reply(prompt, state):
|
|
|
|
pass
|
|
|
|
|
|
|
|
scores = sampler_hijack.global_scores[-1]
|
|
|
|
else:
|
|
|
|
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda()
|
|
|
|
output = shared.model(input_ids=tokens)
|
|
|
|
scores = output['logits'][-1][-1]
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
|
2023-08-23 05:35:12 +02:00
|
|
|
topk_values, topk_indices = torch.topk(probs, k=25, largest=True, sorted=True)
|
2023-08-23 05:18:16 +02:00
|
|
|
topk_values = [f"{float(i):.5f}" for i in topk_values]
|
2023-08-23 05:35:12 +02:00
|
|
|
tokens = [shared.tokenizer.decode(i) for i in topk_indices]
|
2023-08-23 05:18:16 +02:00
|
|
|
|
2023-08-21 01:49:21 +02:00
|
|
|
output = ''
|
2023-08-23 05:35:12 +02:00
|
|
|
for row in list(zip(topk_values, tokens)):
|
2023-08-23 05:18:16 +02:00
|
|
|
output += f"{row[0]} - {row[1]}\n"
|
2023-08-21 01:49:21 +02:00
|
|
|
|
2023-08-23 05:18:16 +02:00
|
|
|
return output, previous
|