2023-05-09 03:31:34 +02:00
import base64
2023-05-03 04:05:38 +02:00
import json
import os
import time
2023-05-11 16:06:39 +02:00
import requests
import yaml
2023-05-03 03:49:53 +02:00
from http . server import BaseHTTPRequestHandler , ThreadingHTTPServer
from threading import Thread
2023-05-10 03:49:39 +02:00
import numpy as np
2023-05-03 03:49:53 +02:00
from modules import shared
from modules . text_generation import encode , generate_reply
params = {
2023-05-03 14:51:49 +02:00
' port ' : int ( os . environ . get ( ' OPENEDAI_PORT ' ) ) if ' OPENEDAI_PORT ' in os . environ else 5001 ,
2023-05-03 03:49:53 +02:00
}
debug = True if ' OPENEDAI_DEBUG ' in os . environ else False
# Optional, install the module and download the model to enable
# v1/embeddings
try :
from sentence_transformers import SentenceTransformer
except ImportError :
pass
st_model = os . environ [ " OPENEDAI_EMBEDDING_MODEL " ] if " OPENEDAI_EMBEDDING_MODEL " in os . environ else " all-mpnet-base-v2 "
embedding_model = None
standard_stopping_strings = [ ' \n system: ' , ' \n user: ' , ' \n human: ' , ' \n assistant: ' , ' \n ### ' , ]
# little helper to get defaults if arg is present but None and should be the same type as default.
def default ( dic , key , default ) :
val = dic . get ( key , default )
if type ( val ) != type ( default ) :
# maybe it's just something like 1 instead of 1.0
try :
v = type ( default ) ( val )
2023-05-03 04:05:38 +02:00
if type ( val ) ( v ) == val : # if it's the same value passed in, it's ok.
2023-05-03 03:49:53 +02:00
return v
except :
pass
val = default
return val
2023-05-03 04:05:38 +02:00
2023-05-03 03:49:53 +02:00
def clamp ( value , minvalue , maxvalue ) :
return max ( minvalue , min ( value , maxvalue ) )
2023-05-11 16:06:39 +02:00
def deduce_template ( ) :
# Alpaca is verbose so a good default prompt
default_template = (
" Below is an instruction that describes a task, paired with an input that provides further context. "
" Write a response that appropriately completes the request. \n \n "
" ### Instruction: \n {instruction} \n \n ### Input: \n {input} \n \n ### Response: \n "
)
# Use the special instruction/input/response template for anything trained like Alpaca
if shared . settings [ ' instruction_template ' ] in [ ' Alpaca ' , ' Alpaca-Input ' ] :
return default_template
try :
instruct = yaml . safe_load ( open ( f " characters/instruction-following/ { shared . settings [ ' instruction_template ' ] } .yaml " , ' r ' ) )
template = instruct [ ' turn_template ' ]
template = template \
. replace ( ' <|user|> ' , instruct . get ( ' user ' , ' ' ) ) \
. replace ( ' <|bot|> ' , instruct . get ( ' bot ' , ' ' ) ) \
. replace ( ' <|user-message|> ' , ' {instruction} \n {input} ' )
return instruct . get ( ' context ' , ' ' ) + template [ : template . find ( ' <|bot-message|> ' ) ]
except :
return default_template
2023-05-09 03:31:34 +02:00
def float_list_to_base64 ( float_list ) :
# Convert the list to a float32 array that the OpenAPI client expects
float_array = np . array ( float_list , dtype = " float32 " )
# Get raw bytes
bytes_array = float_array . tobytes ( )
# Encode bytes into base64
encoded_bytes = base64 . b64encode ( bytes_array )
# Turn raw base64 encoded bytes into ASCII
ascii_string = encoded_bytes . decode ( ' ascii ' )
return ascii_string
2023-05-10 03:49:39 +02:00
2023-05-03 03:49:53 +02:00
class Handler ( BaseHTTPRequestHandler ) :
def do_GET ( self ) :
if self . path . startswith ( ' /v1/models ' ) :
self . send_response ( 200 )
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
# TODO: list all models and allow model changes via API? Lora's?
# This API should list capabilities, limits and pricing...
models = [ {
2023-05-03 04:05:38 +02:00
" id " : shared . model_name , # The real chat/completions model
2023-05-03 03:49:53 +02:00
" object " : " model " ,
" owned_by " : " user " ,
" permission " : [ ]
2023-05-03 04:05:38 +02:00
} , {
" id " : st_model , # The real sentence transformer embeddings model
2023-05-03 03:49:53 +02:00
" object " : " model " ,
" owned_by " : " user " ,
" permission " : [ ]
2023-05-03 04:05:38 +02:00
} , { # these are expected by so much, so include some here as a dummy
" id " : " gpt-3.5-turbo " , # /v1/chat/completions
2023-05-03 03:49:53 +02:00
" object " : " model " ,
" owned_by " : " user " ,
" permission " : [ ]
2023-05-03 04:05:38 +02:00
} , {
" id " : " text-curie-001 " , # /v1/completions, 2k context
2023-05-03 03:49:53 +02:00
" object " : " model " ,
" owned_by " : " user " ,
" permission " : [ ]
2023-05-03 04:05:38 +02:00
} , {
" id " : " text-davinci-002 " , # /v1/embeddings text-embedding-ada-002:1536, text-davinci-002:768
2023-05-03 03:49:53 +02:00
" object " : " model " ,
" owned_by " : " user " ,
" permission " : [ ]
} ]
response = ' '
if self . path == ' /v1/models ' :
response = json . dumps ( {
" object " : " list " ,
" data " : models ,
} )
else :
the_model_name = self . path [ len ( ' /v1/models/ ' ) : ]
response = json . dumps ( {
" id " : the_model_name ,
" object " : " model " ,
" owned_by " : " user " ,
" permission " : [ ]
} )
self . wfile . write ( response . encode ( ' utf-8 ' ) )
else :
self . send_error ( 404 )
def do_POST ( self ) :
2023-05-03 04:05:38 +02:00
if debug :
print ( self . headers ) # did you know... python-openai sends your linux kernel & python version?
2023-05-11 16:06:39 +02:00
content_length = int ( self . headers [ ' Content-Length ' ] )
body = json . loads ( self . rfile . read ( content_length ) . decode ( ' utf-8 ' ) )
2023-05-03 04:05:38 +02:00
if debug :
print ( body )
2023-05-03 03:49:53 +02:00
if ' /completions ' in self . path or ' /generate ' in self . path :
is_legacy = ' /generate ' in self . path
is_chat = ' chat ' in self . path
resp_list = ' data ' if is_legacy else ' choices '
# XXX model is ignored for now
2023-05-03 04:05:38 +02:00
# model = body.get('model', shared.model_name) # ignored, use existing for now
2023-05-03 03:49:53 +02:00
model = shared . model_name
created_time = int ( time . time ( ) )
cmpl_id = " conv- %d " % ( created_time )
# Try to use openai defaults or map them to something with the same intent
stopping_strings = default ( shared . settings , ' custom_stopping_strings ' , [ ] )
if ' stop ' in body :
if isinstance ( body [ ' stop ' ] , str ) :
stopping_strings = [ body [ ' stop ' ] ]
elif isinstance ( body [ ' stop ' ] , list ) :
stopping_strings = body [ ' stop ' ]
truncation_length = default ( shared . settings , ' truncation_length ' , 2048 )
truncation_length = clamp ( default ( body , ' truncation_length ' , truncation_length ) , 1 , truncation_length )
2023-05-11 16:06:39 +02:00
default_max_tokens = truncation_length if is_chat else 16 # completions default, chat default is 'inf' so we need to cap it.
2023-05-03 03:49:53 +02:00
max_tokens_str = ' length ' if is_legacy else ' max_tokens '
max_tokens = default ( body , max_tokens_str , default ( shared . settings , ' max_new_tokens ' , default_max_tokens ) )
2023-05-03 04:05:38 +02:00
2023-05-03 03:49:53 +02:00
# hard scale this, assuming the given max is for GPT3/4, perhaps inspect the requested model and lookup the context max
while truncation_length < = max_tokens :
max_tokens = max_tokens / / 2
req_params = {
' max_new_tokens ' : max_tokens ,
' temperature ' : default ( body , ' temperature ' , 1.0 ) ,
' top_p ' : default ( body , ' top_p ' , 1.0 ) ,
' top_k ' : default ( body , ' best_of ' , 1 ) ,
2023-05-03 04:05:38 +02:00
# XXX not sure about this one, seems to be the right mapping, but the range is different (-2..2.0) vs 0..2
2023-05-03 03:49:53 +02:00
# 0 is default in openai, but 1.0 is default in other places. Maybe it's scaled? scale it.
2023-05-03 04:05:38 +02:00
' repetition_penalty ' : 1.18 , # (default(body, 'presence_penalty', 0) + 2.0 ) / 2.0, # 0 the real default, 1.2 is the model default, but 1.18 works better.
# XXX not sure about this one either, same questions. (-2..2.0), 0 is default not 1.0, scale it.
' encoder_repetition_penalty ' : 1.0 , # (default(body, 'frequency_penalty', 0) + 2.0) / 2.0,
2023-05-03 03:49:53 +02:00
' suffix ' : body . get ( ' suffix ' , None ) ,
' stream ' : default ( body , ' stream ' , False ) ,
' echo ' : default ( body , ' echo ' , False ) ,
#####################################################
' seed ' : shared . settings . get ( ' seed ' , - 1 ) ,
2023-05-03 04:05:38 +02:00
# int(body.get('n', 1)) # perhaps this should be num_beams or chat_generation_attempts? 'n' doesn't have a direct map
2023-05-03 03:49:53 +02:00
# unofficial, but it needs to get set anyways.
' truncation_length ' : truncation_length ,
# no more args.
' add_bos_token ' : shared . settings . get ( ' add_bos_token ' , True ) ,
' do_sample ' : True ,
' typical_p ' : 1.0 ,
' min_length ' : 0 ,
' no_repeat_ngram_size ' : 0 ,
' num_beams ' : 1 ,
' penalty_alpha ' : 0.0 ,
' length_penalty ' : 1 ,
' early_stopping ' : False ,
' ban_eos_token ' : False ,
' skip_special_tokens ' : True ,
}
# fixup absolute 0.0's
for par in [ ' temperature ' , ' repetition_penalty ' , ' encoder_repetition_penalty ' ] :
req_params [ par ] = clamp ( req_params [ par ] , 0.001 , 1.999 )
self . send_response ( 200 )
if req_params [ ' stream ' ] :
self . send_header ( ' Content-Type ' , ' text/event-stream ' )
self . send_header ( ' Cache-Control ' , ' no-cache ' )
2023-05-03 04:05:38 +02:00
# self.send_header('Connection', 'keep-alive')
2023-05-03 03:49:53 +02:00
else :
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
token_count = 0
completion_token_count = 0
prompt = ' '
stream_object_type = ' '
object_type = ' '
if is_chat :
stream_object_type = ' chat.completions.chunk '
object_type = ' chat.completions '
messages = body [ ' messages ' ]
2023-05-03 04:05:38 +02:00
system_msg = ' ' # You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date}
if ' prompt ' in body : # Maybe they sent both? This is not documented in the API, but some clients seem to do this.
2023-05-03 03:49:53 +02:00
system_msg = body [ ' prompt ' ]
chat_msgs = [ ]
for m in messages :
role = m [ ' role ' ]
content = m [ ' content ' ]
2023-05-03 04:05:38 +02:00
# name = m.get('name', 'user')
2023-05-03 03:49:53 +02:00
if role == ' system ' :
system_msg + = content
else :
2023-05-03 04:05:38 +02:00
chat_msgs . extend ( [ f " \n { role } : { content . strip ( ) } " ] ) # Strip content? linefeed?
2023-05-03 03:49:53 +02:00
system_token_count = len ( encode ( system_msg ) [ 0 ] )
remaining_tokens = req_params [ ' truncation_length ' ] - req_params [ ' max_new_tokens ' ] - system_token_count
chat_msg = ' '
2023-05-03 04:05:38 +02:00
2023-05-03 03:49:53 +02:00
while chat_msgs :
new_msg = chat_msgs . pop ( )
new_size = len ( encode ( new_msg ) [ 0 ] )
if new_size < = remaining_tokens :
chat_msg = new_msg + chat_msg
remaining_tokens - = new_size
else :
# TODO: clip a message to fit?
# ie. user: ...<clipped message>
break
if len ( chat_msgs ) > 0 :
print ( f " truncating chat messages, dropping { len ( chat_msgs ) } messages. " )
if system_msg :
2023-05-03 04:05:38 +02:00
prompt = ' system: ' + system_msg + ' \n ' + chat_msg + ' \n assistant: '
2023-05-03 03:49:53 +02:00
else :
prompt = chat_msg + ' \n assistant: '
token_count = len ( encode ( prompt ) [ 0 ] )
# pass with some expected stop strings.
# some strange cases of "##| Instruction: " sneaking through.
stopping_strings + = standard_stopping_strings
req_params [ ' custom_stopping_strings ' ] = stopping_strings
else :
stream_object_type = ' text_completion.chunk '
object_type = ' text_completion '
# ... encoded as a string, array of strings, array of tokens, or array of token arrays.
if is_legacy :
2023-05-03 04:05:38 +02:00
prompt = body [ ' context ' ] # Older engines.generate API
2023-05-03 03:49:53 +02:00
else :
2023-05-03 04:05:38 +02:00
prompt = body [ ' prompt ' ] # XXX this can be different types
2023-05-03 03:49:53 +02:00
if isinstance ( prompt , list ) :
2023-05-03 04:05:38 +02:00
prompt = ' ' . join ( prompt ) # XXX this is wrong... need to split out to multiple calls?
2023-05-03 03:49:53 +02:00
token_count = len ( encode ( prompt ) [ 0 ] )
if token_count > = req_params [ ' truncation_length ' ] :
2023-05-03 04:05:38 +02:00
new_len = int ( len ( prompt ) * ( float ( shared . settings [ ' truncation_length ' ] ) - req_params [ ' max_new_tokens ' ] ) / token_count )
2023-05-03 03:49:53 +02:00
prompt = prompt [ - new_len : ]
print ( f " truncating prompt to { new_len } characters, was { token_count } tokens. Now: { len ( encode ( prompt ) [ 0 ] ) } tokens. " )
# pass with some expected stop strings.
# some strange cases of "##| Instruction: " sneaking through.
stopping_strings + = standard_stopping_strings
req_params [ ' custom_stopping_strings ' ] = stopping_strings
2023-05-05 23:53:03 +02:00
if req_params [ ' stream ' ] :
2023-05-03 03:49:53 +02:00
shared . args . chat = True
# begin streaming
chunk = {
" id " : cmpl_id ,
" object " : stream_object_type ,
" created " : created_time ,
" model " : shared . model_name ,
resp_list : [ {
" index " : 0 ,
" finish_reason " : None ,
} ] ,
}
if stream_object_type == ' text_completion.chunk ' :
chunk [ resp_list ] [ 0 ] [ " text " ] = " "
else :
# This is coming back as "system" to the openapi cli, not sure why.
2023-05-03 04:05:38 +02:00
# So yeah... do both methods? delta and messages.
2023-05-03 03:49:53 +02:00
chunk [ resp_list ] [ 0 ] [ " message " ] = { ' role ' : ' assistant ' , ' content ' : ' ' }
chunk [ resp_list ] [ 0 ] [ " delta " ] = { ' role ' : ' assistant ' , ' content ' : ' ' }
2023-05-03 04:05:38 +02:00
# { "role": "assistant" }
2023-05-03 03:49:53 +02:00
response = ' data: ' + json . dumps ( chunk ) + ' \n '
self . wfile . write ( response . encode ( ' utf-8 ' ) )
# generate reply #######################################
2023-05-03 04:05:38 +02:00
if debug :
print ( { ' prompt ' : prompt , ' req_params ' : req_params , ' stopping_strings ' : stopping_strings } )
2023-05-11 22:07:20 +02:00
generator = generate_reply ( prompt , req_params , stopping_strings = stopping_strings , is_chat = False )
2023-05-03 03:49:53 +02:00
answer = ' '
seen_content = ' '
2023-05-03 04:05:38 +02:00
longest_stop_len = max ( [ len ( x ) for x in stopping_strings ] )
2023-05-03 03:49:53 +02:00
for a in generator :
2023-05-11 22:07:20 +02:00
answer = a
2023-05-03 03:49:53 +02:00
stop_string_found = False
len_seen = len ( seen_content )
search_start = max ( len_seen - longest_stop_len , 0 )
for string in stopping_strings :
idx = answer . find ( string , search_start )
if idx != - 1 :
2023-05-03 04:05:38 +02:00
answer = answer [ : idx ] # clip it.
2023-05-03 03:49:53 +02:00
stop_string_found = True
if stop_string_found :
break
# If something like "\nYo" is generated just before "\nYou:"
# is completed, buffer and generate more, don't send it
buffer_and_continue = False
for string in stopping_strings :
for j in range ( len ( string ) - 1 , 0 , - 1 ) :
if answer [ - j : ] == string [ : j ] :
buffer_and_continue = True
break
else :
continue
break
if buffer_and_continue :
continue
2023-05-05 23:53:03 +02:00
if req_params [ ' stream ' ] :
2023-05-03 03:49:53 +02:00
# Streaming
new_content = answer [ len_seen : ]
2023-05-03 04:05:38 +02:00
if not new_content or chr ( 0xfffd ) in new_content : # partial unicode character, don't send it yet.
2023-05-03 03:49:53 +02:00
continue
2023-05-03 04:05:38 +02:00
2023-05-03 03:49:53 +02:00
seen_content = answer
chunk = {
" id " : cmpl_id ,
" object " : stream_object_type ,
" created " : created_time ,
" model " : shared . model_name ,
resp_list : [ {
" index " : 0 ,
" finish_reason " : None ,
} ] ,
}
if stream_object_type == ' text_completion.chunk ' :
chunk [ resp_list ] [ 0 ] [ ' text ' ] = new_content
else :
2023-05-03 04:05:38 +02:00
# So yeah... do both methods? delta and messages.
chunk [ resp_list ] [ 0 ] [ ' message ' ] = { ' content ' : new_content }
chunk [ resp_list ] [ 0 ] [ ' delta ' ] = { ' content ' : new_content }
2023-05-03 03:49:53 +02:00
response = ' data: ' + json . dumps ( chunk ) + ' \n '
self . wfile . write ( response . encode ( ' utf-8 ' ) )
completion_token_count + = len ( encode ( new_content ) [ 0 ] )
2023-05-05 23:53:03 +02:00
if req_params [ ' stream ' ] :
2023-05-03 03:49:53 +02:00
chunk = {
" id " : cmpl_id ,
" object " : stream_object_type ,
" created " : created_time ,
2023-05-03 04:05:38 +02:00
" model " : model , # TODO: add Lora info?
2023-05-03 03:49:53 +02:00
resp_list : [ {
2023-05-10 03:49:39 +02:00
" index " : 0 ,
" finish_reason " : " stop " ,
2023-05-03 03:49:53 +02:00
} ] ,
" usage " : {
" prompt_tokens " : token_count ,
" completion_tokens " : completion_token_count ,
" total_tokens " : token_count + completion_token_count
}
}
if stream_object_type == ' text_completion.chunk ' :
chunk [ resp_list ] [ 0 ] [ ' text ' ] = ' '
else :
2023-05-03 04:05:38 +02:00
# So yeah... do both methods? delta and messages.
chunk [ resp_list ] [ 0 ] [ ' message ' ] = { ' content ' : ' ' }
2023-05-03 03:49:53 +02:00
chunk [ resp_list ] [ 0 ] [ ' delta ' ] = { }
response = ' data: ' + json . dumps ( chunk ) + ' \n data: [DONE] \n '
self . wfile . write ( response . encode ( ' utf-8 ' ) )
2023-05-03 04:05:38 +02:00
# Finished if streaming.
if debug :
print ( { ' response ' : answer } )
2023-05-03 03:49:53 +02:00
return
2023-05-03 04:05:38 +02:00
if debug :
print ( { ' response ' : answer } )
2023-05-03 03:49:53 +02:00
completion_token_count = len ( encode ( answer ) [ 0 ] )
stop_reason = " stop "
if token_count + completion_token_count > = req_params [ ' truncation_length ' ] :
stop_reason = " length "
resp = {
" id " : cmpl_id ,
" object " : object_type ,
" created " : created_time ,
2023-05-03 04:05:38 +02:00
" model " : model , # TODO: add Lora info?
2023-05-03 03:49:53 +02:00
resp_list : [ {
" index " : 0 ,
" finish_reason " : stop_reason ,
} ] ,
" usage " : {
" prompt_tokens " : token_count ,
" completion_tokens " : completion_token_count ,
" total_tokens " : token_count + completion_token_count
}
}
if is_chat :
2023-05-03 04:05:38 +02:00
resp [ resp_list ] [ 0 ] [ " message " ] = { " role " : " assistant " , " content " : answer }
2023-05-03 03:49:53 +02:00
else :
resp [ resp_list ] [ 0 ] [ " text " ] = answer
2023-05-11 16:06:39 +02:00
response = json . dumps ( resp )
self . wfile . write ( response . encode ( ' utf-8 ' ) )
elif ' /edits ' in self . path :
self . send_response ( 200 )
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
created_time = int ( time . time ( ) )
# Using Alpaca format, this may work with other models too.
instruction = body [ ' instruction ' ]
input = body . get ( ' input ' , ' ' )
instruction_template = deduce_template ( )
edit_task = instruction_template . format ( instruction = instruction , input = input )
truncation_length = default ( shared . settings , ' truncation_length ' , 2048 )
token_count = len ( encode ( edit_task ) [ 0 ] )
max_tokens = truncation_length - token_count
req_params = {
' max_new_tokens ' : max_tokens ,
' temperature ' : clamp ( default ( body , ' temperature ' , 1.0 ) , 0.001 , 1.999 ) ,
' top_p ' : clamp ( default ( body , ' top_p ' , 1.0 ) , 0.001 , 1.0 ) ,
' top_k ' : 1 ,
' repetition_penalty ' : 1.18 ,
' encoder_repetition_penalty ' : 1.0 ,
' suffix ' : None ,
' stream ' : False ,
' echo ' : False ,
' seed ' : shared . settings . get ( ' seed ' , - 1 ) ,
# 'n' : default(body, 'n', 1), # 'n' doesn't have a direct map
' truncation_length ' : truncation_length ,
' add_bos_token ' : shared . settings . get ( ' add_bos_token ' , True ) ,
' do_sample ' : True ,
' typical_p ' : 1.0 ,
' min_length ' : 0 ,
' no_repeat_ngram_size ' : 0 ,
' num_beams ' : 1 ,
' penalty_alpha ' : 0.0 ,
' length_penalty ' : 1 ,
' early_stopping ' : False ,
' ban_eos_token ' : False ,
' skip_special_tokens ' : True ,
' custom_stopping_strings ' : [ ] ,
}
if debug :
print ( { ' edit_template ' : edit_task , ' req_params ' : req_params , ' token_count ' : token_count } )
2023-05-11 21:32:25 +02:00
generator = generate_reply ( edit_task , req_params , stopping_strings = standard_stopping_strings , is_chat = True )
2023-05-11 16:06:39 +02:00
answer = ' '
for a in generator :
2023-05-11 22:07:20 +02:00
answer = a
2023-05-11 16:06:39 +02:00
completion_token_count = len ( encode ( answer ) [ 0 ] )
resp = {
" object " : " edit " ,
" created " : created_time ,
" choices " : [ {
" text " : answer ,
" index " : 0 ,
} ] ,
" usage " : {
" prompt_tokens " : token_count ,
" completion_tokens " : completion_token_count ,
" total_tokens " : token_count + completion_token_count
}
}
if debug :
print ( { ' answer ' : answer , ' completion_token_count ' : completion_token_count } )
response = json . dumps ( resp )
self . wfile . write ( response . encode ( ' utf-8 ' ) )
elif ' /images/generations ' in self . path and ' SD_WEBUI_URL ' in os . environ :
# Stable Diffusion callout wrapper for txt2img
# Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E
# the results will be limited and likely poor. SD has hundreds of models and dozens of settings.
# If you want high quality tailored results you should just use the Stable Diffusion API directly.
# it's too general an API to try and shape the result with specific tags like "masterpiece", etc,
# Will probably work best with the stock SD models.
# SD configuration is beyond the scope of this API.
# At this point I will not add the edits and variations endpoints (ie. img2img) because they
# require changing the form data handling to accept multipart form data, also to properly support
# url return types will require file management and a web serving files... Perhaps later!
self . send_response ( 200 )
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
width , height = [ int ( x ) for x in default ( body , ' size ' , ' 1024x1024 ' ) . split ( ' x ' ) ] # ignore the restrictions on size
response_format = default ( body , ' response_format ' , ' url ' ) # or b64_json
payload = {
' prompt ' : body [ ' prompt ' ] , # ignore prompt limit of 1000 characters
' width ' : width ,
' height ' : height ,
' batch_size ' : default ( body , ' n ' , 1 ) # ignore the batch limits of max 10
}
resp = {
' created ' : int ( time . time ( ) ) ,
' data ' : [ ]
}
# TODO: support SD_WEBUI_AUTH username:password pair.
sd_url = f " { os . environ [ ' SD_WEBUI_URL ' ] } /sdapi/v1/txt2img "
response = requests . post ( url = sd_url , json = payload )
r = response . json ( )
# r['parameters']...
for b64_json in r [ ' images ' ] :
if response_format == ' b64_json ' :
resp [ ' data ' ] . extend ( [ { ' b64_json ' : b64_json } ] )
else :
resp [ ' data ' ] . extend ( [ { ' url ' : f ' data:image/png;base64, { b64_json } ' } ] ) # yeah it's lazy. requests.get() will not work with this
2023-05-03 03:49:53 +02:00
response = json . dumps ( resp )
self . wfile . write ( response . encode ( ' utf-8 ' ) )
2023-05-03 04:05:38 +02:00
elif ' /embeddings ' in self . path and embedding_model is not None :
2023-05-03 03:49:53 +02:00
self . send_response ( 200 )
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
input = body [ ' input ' ] if ' input ' in body else body [ ' text ' ]
if type ( input ) is str :
input = [ input ]
embeddings = embedding_model . encode ( input ) . tolist ( )
2023-05-09 03:31:34 +02:00
def enc_emb ( emb ) :
# If base64 is specified, encode. Otherwise, do nothing.
if body . get ( " encoding_format " , " " ) == " base64 " :
return float_list_to_base64 ( emb )
else :
return emb
data = [ { " object " : " embedding " , " embedding " : enc_emb ( emb ) , " index " : n } for n , emb in enumerate ( embeddings ) ]
2023-05-03 03:49:53 +02:00
response = json . dumps ( {
" object " : " list " ,
" data " : data ,
2023-05-03 04:05:38 +02:00
" model " : st_model , # return the real model
2023-05-03 03:49:53 +02:00
" usage " : {
" prompt_tokens " : 0 ,
" total_tokens " : 0 ,
}
} )
2023-05-03 04:05:38 +02:00
if debug :
print ( f " Embeddings return size: { len ( embeddings [ 0 ] ) } , number: { len ( embeddings ) } " )
2023-05-03 03:49:53 +02:00
self . wfile . write ( response . encode ( ' utf-8 ' ) )
elif ' /moderations ' in self . path :
# for now do nothing, just don't error.
self . send_response ( 200 )
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
response = json . dumps ( {
" id " : " modr-5MWoLO " ,
" model " : " text-moderation-001 " ,
" results " : [ {
" categories " : {
" hate " : False ,
" hate/threatening " : False ,
" self-harm " : False ,
" sexual " : False ,
" sexual/minors " : False ,
" violence " : False ,
" violence/graphic " : False
} ,
" category_scores " : {
" hate " : 0.0 ,
" hate/threatening " : 0.0 ,
" self-harm " : 0.0 ,
" sexual " : 0.0 ,
" sexual/minors " : 0.0 ,
" violence " : 0.0 ,
" violence/graphic " : 0.0
} ,
" flagged " : False
} ]
} )
self . wfile . write ( response . encode ( ' utf-8 ' ) )
elif self . path == ' /api/v1/token-count ' :
# NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side.
self . send_response ( 200 )
self . send_header ( ' Content-Type ' , ' application/json ' )
self . end_headers ( )
tokens = encode ( body [ ' prompt ' ] ) [ 0 ]
response = json . dumps ( {
' results ' : [ {
' tokens ' : len ( tokens )
} ]
} )
self . wfile . write ( response . encode ( ' utf-8 ' ) )
else :
print ( self . path , self . headers )
self . send_error ( 404 )
def run_server ( ) :
global embedding_model
try :
embedding_model = SentenceTransformer ( st_model )
print ( f " \n Loaded embedding model: { st_model } , max sequence length: { embedding_model . max_seq_length } " )
except :
print ( f " \n Failed to load embedding model: { st_model } " )
pass
server_addr = ( ' 0.0.0.0 ' if shared . args . listen else ' 127.0.0.1 ' , params [ ' port ' ] )
server = ThreadingHTTPServer ( server_addr , Handler )
if shared . args . share :
try :
from flask_cloudflared import _run_cloudflared
public_url = _run_cloudflared ( params [ ' port ' ] , params [ ' port ' ] + 1 )
2023-05-11 16:06:39 +02:00
print ( f ' Starting OpenAI compatible api at \n OPENAI_API_BASE= { public_url } /v1 ' )
2023-05-03 03:49:53 +02:00
except ImportError :
print ( ' You should install flask_cloudflared manually ' )
else :
2023-05-11 16:06:39 +02:00
print ( f ' Starting OpenAI compatible api: \n OPENAI_API_BASE=http:// { server_addr [ 0 ] } : { server_addr [ 1 ] } /v1 ' )
2023-05-03 03:49:53 +02:00
server . serve_forever ( )
def setup ( ) :
Thread ( target = run_server , daemon = True ) . start ( )