text-generation-webui/extensions/superbooga/script.py

375 lines
16 KiB
Python
Raw Normal View History

import re
import textwrap
import gradio as gr
from bs4 import BeautifulSoup
2023-05-20 23:42:17 +02:00
2023-05-07 20:01:14 +02:00
from modules import chat, shared
from modules.logging_colors import logger
2023-05-07 20:01:14 +02:00
2023-05-13 19:14:59 +02:00
from .chromadb import add_chunks_to_collector, make_collector
from .download_urls import download_urls
import requests
import json
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
params = {
'chunk_count': 5,
'chunk_count_initial': 10,
'time_weight': 0,
2023-05-11 04:54:25 +02:00
'chunk_length': 700,
'chunk_separator': '',
'strong_cleanup': False,
'semantic_cleanup': True,
'semantic_weight': 0.5,
'threads': 4,
}
2023-05-13 19:14:59 +02:00
collector = make_collector()
chat_collector = make_collector()
def feed_data_into_collector(corpus, chunk_len, chunk_sep):
global collector
2023-05-07 20:01:14 +02:00
# Defining variables
chunk_len = int(chunk_len)
chunk_sep = chunk_sep.replace(r'\n', '\n')
cumulative = ''
2023-05-07 20:01:14 +02:00
# Breaking the data into chunks and adding those to the db
cumulative += "Breaking the input dataset...\n\n"
yield cumulative
if chunk_sep:
data_chunks = corpus.split(chunk_sep)
data_chunks = [[data_chunk[i:i + chunk_len] for i in range(0, len(data_chunk), chunk_len)] for data_chunk in data_chunks]
data_chunks = [x for y in data_chunks for x in y]
else:
data_chunks = [corpus[i:i + chunk_len] for i in range(0, len(corpus), chunk_len)]
2023-05-20 23:42:17 +02:00
cumulative += f"{len(data_chunks)} chunks have been found.\n\nAdding the chunks to the database...\n\n"
yield cumulative
add_chunks_to_collector(data_chunks, collector)
cumulative += "Done."
yield cumulative
def feed_file_into_collector(file, chunk_len, chunk_sep):
yield 'Reading the input dataset...\n\n'
text = file.decode('utf-8')
for i in feed_data_into_collector(text, chunk_len, chunk_sep):
yield i
def feed_url_into_collector(urls, chunk_len, chunk_sep, strong_cleanup, threads):
all_text = ''
cumulative = ''
urls = urls.strip().split('\n')
cumulative += f'Loading {len(urls)} URLs with {threads} threads...\n\n'
yield cumulative
for update, contents in download_urls(urls, threads=threads):
yield cumulative + update
cumulative += 'Processing the HTML sources...'
yield cumulative
for content in contents:
soup = BeautifulSoup(content, features="html.parser")
for script in soup(["script", "style"]):
script.extract()
strings = soup.stripped_strings
if strong_cleanup:
strings = [s for s in strings if re.search("[A-Za-z] ", s)]
text = '\n'.join([s.strip() for s in strings])
all_text += text
for i in feed_data_into_collector(all_text, chunk_len, chunk_sep):
yield i
def calculate_semantic_similarity(query_embedding, target_embedding):
# Calculate cosine similarity between the query embedding and the target embedding
similarity = cosine_similarity(query_embedding.reshape(1, -1), target_embedding.reshape(1, -1))
return similarity[0][0]
def feed_search_into_collector(query, chunk_len, chunk_sep, strong_cleanup, semantic_cleanup, semantic_requirement, threads):
# Load parameters from the config file
with open('custom_search_engine_keys.json') as key_file:
key = json.load(key_file)
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = model.encode([query])[0]
# Set up API endpoint and parameters
url = "https://www.googleapis.com/customsearch/v1"
# Retrieve the values from the config dictionary
params = {
"key": key.get("key", "default_key_value"),
"cx": key.get("cx", "default_custom_engine_value"),
"q": str(query),
}
if "default_key_value" in str(params):
print("You need to provide an API key, by modifying the custom_search_engine_keys.json in oobabooga_windows \ text-generation-webui.\nSkipping search")
return query
if "default_custom_engine_value" in str(params):
print("You need to provide an CSE ID, by modifying the script.py in oobabooga_windows \ text-generation-webui.\nSkipping search")
return query
# Send API request
response = requests.get(url, params=params)
# Parse JSON response
data = response.json()
# get the result items
search_items = data.get("items")
# iterate over 10 results found
urls = ""
for i, search_item in enumerate(search_items, start=1):
if semantic_cleanup:
# get titles and descriptions and use that to semantically weight the search result
# get the page title
title = search_item.get("title")
# page snippet
snippet = search_item.get("snippet")
target_sentence = str(title) + " " + str(snippet)
target_embedding = model.encode([target_sentence])[0]
similarity_score = calculate_semantic_similarity(query_embedding, target_embedding)
if similarity_score < semantic_requirement:
continue
# extract the page url and add it to the urls to download
link = search_item.get("link")
urls += link + "\n"
# Call the original feed_url_into_collector function instead of duplicating the code
result_generator = feed_url_into_collector(urls, chunk_len, chunk_sep, strong_cleanup, threads)
# Consume the yielded values
for result in result_generator:
yield result
def apply_settings(chunk_count, chunk_count_initial, time_weight):
global params
params['chunk_count'] = int(chunk_count)
params['chunk_count_initial'] = int(chunk_count_initial)
params['time_weight'] = time_weight
settings_to_display = {k: params[k] for k in params if k in ['chunk_count', 'chunk_count_initial', 'time_weight']}
2023-05-07 16:30:16 +02:00
yield f"The following settings are now active: {str(settings_to_display)}"
def custom_generate_chat_prompt(user_input, state, **kwargs):
global chat_collector
if state['mode'] == 'instruct':
results = collector.get_sorted(user_input, n_results=params['chunk_count'])
2023-05-13 19:23:02 +02:00
additional_context = '\nYour reply should be based on the context below:\n\n' + '\n'.join(results)
user_input += additional_context
logger.info(f'\n\n=== === ===\nAdding the following new context:\n{additional_context}\n=== === ===\n')
else:
def make_single_exchange(id_):
output = ''
output += f"{state['name1']}: {shared.history['internal'][id_][0]}\n"
output += f"{state['name2']}: {shared.history['internal'][id_][1]}\n"
return output
if len(shared.history['internal']) > params['chunk_count'] and user_input != '':
chunks = []
hist_size = len(shared.history['internal'])
for i in range(hist_size-1):
chunks.append(make_single_exchange(i))
add_chunks_to_collector(chunks, chat_collector)
query = '\n'.join(shared.history['internal'][-1] + [user_input])
try:
best_ids = chat_collector.get_ids_sorted(query, n_results=params['chunk_count'], n_initial=params['chunk_count_initial'], time_weight=params['time_weight'])
additional_context = '\n'
for id_ in best_ids:
if shared.history['internal'][id_][0] != '<|BEGIN-VISIBLE-CHAT|>':
additional_context += make_single_exchange(id_)
logger.warning(f'Adding the following new context:\n{additional_context}')
state['context'] = state['context'].strip() + '\n' + additional_context
2023-05-20 23:42:17 +02:00
kwargs['history'] = {
'internal': [shared.history['internal'][i] for i in range(hist_size) if i not in best_ids],
2023-05-20 23:42:17 +02:00
'visible': ''
}
except RuntimeError:
logger.error("Couldn't query the database, moving on...")
return chat.generate_chat_prompt(user_input, state, **kwargs)
def remove_special_tokens(string):
2023-05-13 19:14:59 +02:00
pattern = r'(<\|begin-user-input\|>|<\|end-user-input\|>|<\|injection-point\|>)'
return re.sub(pattern, '', string)
def input_modifier(string):
2023-05-07 20:01:14 +02:00
if shared.is_chat():
return string
# Find the user input
2023-05-07 16:54:26 +02:00
pattern = re.compile(r"<\|begin-user-input\|>(.*?)<\|end-user-input\|>", re.DOTALL)
match = re.search(pattern, string)
if match:
2023-05-07 16:54:26 +02:00
user_input = match.group(1).strip()
2023-05-13 19:14:59 +02:00
# Get the most similar chunks
results = collector.get_sorted(user_input, n_results=params['chunk_count'])
2023-05-13 19:14:59 +02:00
# Make the injection
string = string.replace('<|injection-point|>', '\n'.join(results))
2023-05-13 19:14:59 +02:00
return remove_special_tokens(string)
def ui():
2023-05-07 16:30:16 +02:00
with gr.Accordion("Click for more information...", open=False):
gr.Markdown(textwrap.dedent("""
## About
2023-05-07 16:30:16 +02:00
This extension takes a dataset as input, breaks it into chunks, and adds the result to a local/offline Chroma database.
The database is then queried during inference time to get the excerpts that are closest to your input. The idea is to create an arbitrarily large pseudo context.
The core methodology was developed and contributed by kaiokendev, who is working on improvements to the method in this repository: https://github.com/kaiokendev/superbig
2023-05-07 18:29:49 +02:00
## Data input
2023-05-07 20:01:14 +02:00
Start by entering some data in the interface below and then clicking on "Load data".
Each time you load some new data, the old chunks are discarded.
## Chat mode
#### Instruct
On each turn, the chunks will be compared to your current input and the most relevant matches will be appended to the input in the following format:
```
Consider the excerpts below as additional context:
...
```
2023-05-13 19:14:59 +02:00
The injection doesn't make it into the chat history. It is only used in the current generation.
#### Regular chat
The chunks from the external data sources are ignored, and the chroma database is built based on the chat history instead. The most relevant past exchanges relative to the present input are added to the context string. This way, the extension acts as a long term memory.
## Notebook/default modes
Your question must be manually specified between `<|begin-user-input|>` and `<|end-user-input|>` tags, and the injection point must be specified with `<|injection-point|>`.
The special tokens mentioned above (`<|begin-user-input|>`, `<|end-user-input|>`, and `<|injection-point|>`) are removed in the background before the text generation begins.
Here is an example in Vicuna 1.1 format:
2023-05-07 16:30:16 +02:00
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
USER:
2023-05-07 16:54:26 +02:00
<|begin-user-input|>
What datasets are mentioned in the text below?
2023-05-07 16:54:26 +02:00
<|end-user-input|>
2023-05-07 16:30:16 +02:00
<|injection-point|>
ASSISTANT:
2023-05-07 16:30:16 +02:00
```
For best results, make sure to remove the spaces and new line characters after `ASSISTANT:`.
2023-05-07 16:30:16 +02:00
*This extension is currently experimental and under development.*
"""))
with gr.Row():
with gr.Column(min_width=600):
with gr.Tab("Text input"):
data_input = gr.Textbox(lines=20, label='Input data')
update_data = gr.Button('Load data')
with gr.Tab("URL input"):
url_input = gr.Textbox(lines=10, label='Input URLs', info='Enter one or more URLs separated by newline characters.')
strong_cleanup = gr.Checkbox(value=params['strong_cleanup'], label='Strong cleanup', info='Only keeps html elements that look like long-form text.')
threads = gr.Number(value=params['threads'], label='Threads', info='The number of threads to use while downloading the URLs.', precision=0)
update_url = gr.Button('Load data')
with gr.Tab("File input"):
file_input = gr.File(label='Input file', type='binary')
update_file = gr.Button('Load data')
with gr.Tab("Search input"):
search_term = gr.Textbox(lines=1, label='Search Input', info='Enter a google search, returned results will be fed into the DB')
search_strong_cleanup = gr.Checkbox(value=params['strong_cleanup'], label='Strong cleanup', info='Only keeps html elements that look like long-form text.')
semantic_cleanup = gr.Checkbox(value=params['semantic_cleanup'], label='Require semantic similarity', info='Only download pages with similar titles/snippets to the search based on a semantic search')
semantic_requirement = gr.Slider(0, 1, value=params['semantic_weight'], label='Semantic similarity requirement', info='Defines the requirement of the semantic search. 0 = no culling of dissimilar pages.')
search_threads = gr.Number(value=params['threads'], label='Threads', info='The number of threads to use while downloading the URLs.', precision=0)
update_search = gr.Button('Load data')
with gr.Accordion("Click for more information...", open=False):
gr.Markdown(textwrap.dedent("""
### Instructions for Installation/Setup:
To set up a custom search engine with Google, please follow the instructions provided in this guide:
https://www.thepythoncode.com/article/use-google-custom-search-engine-api-in-python
Create a new file called "custom_search_engine_keys.json".
Open the "custom_search_engine_keys.json" file and paste the following text into it:
json
{
"key": "Custom search engine key",
"cx": "Custom search engine cx number"
}
Replace the placeholders "Custom search engine key" and "Custom search engine cx number" with the respective values you obtained from the previous step.
### Usage:
Enter your desired search query in the search box above.
Press the "Load Data" button. This will add the retrieved data to the local chromaDB, which will be read into the context during runtime.
"""))
with gr.Tab("Generation settings"):
chunk_count = gr.Number(value=params['chunk_count'], label='Chunk count', info='The number of closest-matching chunks to include in the prompt.')
gr.Markdown('Time weighting (optional, used in to make recently added chunks more likely to appear)')
time_weight = gr.Slider(0, 1, value=params['time_weight'], label='Time weight', info='Defines the strength of the time weighting. 0 = no time weighting.')
chunk_count_initial = gr.Number(value=params['chunk_count_initial'], label='Initial chunk count', info='The number of closest-matching chunks retrieved for time weight reordering in chat mode. This should be >= chunk count. -1 = All chunks are retrieved. Only used if time_weight > 0.')
update_settings = gr.Button('Apply changes')
chunk_len = gr.Number(value=params['chunk_length'], label='Chunk length', info='In characters, not tokens. This value is used when you click on "Load data".')
chunk_sep = gr.Textbox(value=params['chunk_separator'], label='Chunk separator', info='Used to manually split chunks. Manually split chunks longer than chunk length are split again. This value is used when you click on "Load data".')
with gr.Column():
last_updated = gr.Markdown()
update_data.click(feed_data_into_collector, [data_input, chunk_len, chunk_sep], last_updated, show_progress=False)
update_url.click(feed_url_into_collector, [url_input, chunk_len, chunk_sep, strong_cleanup, threads], last_updated, show_progress=False)
update_file.click(feed_file_into_collector, [file_input, chunk_len, chunk_sep], last_updated, show_progress=False)
update_search.click(feed_search_into_collector, [search_term, chunk_len, chunk_sep, search_strong_cleanup, semantic_cleanup, semantic_requirement, search_threads], last_updated,show_progress=False)
update_settings.click(apply_settings, [chunk_count, chunk_count_initial, time_weight], last_updated, show_progress=False)