2023-04-21 05:20:33 +02:00
|
|
|
import datetime
|
|
|
|
import traceback
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import torch
|
|
|
|
from datasets import load_dataset
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
from modules import shared
|
|
|
|
from modules.models import load_model, unload_model
|
|
|
|
from modules.text_generation import encode
|
|
|
|
from server import get_model_specific_settings, update_model_parameters
|
|
|
|
|
|
|
|
|
|
|
|
def load_past_evaluations():
|
|
|
|
if Path('logs/evaluations.csv').exists():
|
|
|
|
df = pd.read_csv(Path('logs/evaluations.csv'), dtype=str)
|
|
|
|
df['Perplexity'] = pd.to_numeric(df['Perplexity'])
|
|
|
|
return df
|
|
|
|
else:
|
|
|
|
return pd.DataFrame(columns=['Model', 'LoRAs', 'Dataset', 'Perplexity', 'stride', 'max_length', 'Date', 'Comment'])
|
2023-05-10 03:49:39 +02:00
|
|
|
|
|
|
|
|
2023-04-21 05:20:33 +02:00
|
|
|
past_evaluations = load_past_evaluations()
|
|
|
|
|
|
|
|
|
|
|
|
def save_past_evaluations(df):
|
2023-04-21 17:34:08 +02:00
|
|
|
global past_evaluations
|
|
|
|
past_evaluations = df
|
2023-05-23 06:54:52 +02:00
|
|
|
filepath = Path('logs/evaluations.csv')
|
|
|
|
filepath.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
df.to_csv(filepath, index=False)
|
2023-04-21 05:20:33 +02:00
|
|
|
|
|
|
|
|
|
|
|
def calculate_perplexity(models, input_dataset, stride, _max_length):
|
|
|
|
'''
|
|
|
|
Based on:
|
|
|
|
https://huggingface.co/docs/transformers/perplexity#calculating-ppl-with-fixedlength-models
|
|
|
|
'''
|
|
|
|
|
|
|
|
global past_evaluations
|
|
|
|
cumulative_log = ''
|
2023-05-23 06:54:52 +02:00
|
|
|
cumulative_log += "Loading the input dataset...\n\n"
|
2023-04-21 05:20:33 +02:00
|
|
|
yield cumulative_log
|
|
|
|
|
|
|
|
# Copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/utils/datautils.py
|
|
|
|
if input_dataset == 'wikitext':
|
|
|
|
data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
|
|
|
|
text = "\n\n".join(data['text'])
|
|
|
|
elif input_dataset == 'ptb':
|
|
|
|
data = load_dataset('ptb_text_only', 'penn_treebank', split='validation')
|
|
|
|
text = "\n\n".join(data['sentence'])
|
|
|
|
elif input_dataset == 'ptb_new':
|
|
|
|
data = load_dataset('ptb_text_only', 'penn_treebank', split='test')
|
|
|
|
text = " ".join(data['sentence'])
|
|
|
|
else:
|
|
|
|
with open(Path(f'training/datasets/{input_dataset}.txt'), 'r', encoding='utf-8') as f:
|
|
|
|
text = f.read()
|
|
|
|
|
|
|
|
for model in models:
|
|
|
|
if is_in_past_evaluations(model, input_dataset, stride, _max_length):
|
2023-05-23 06:54:52 +02:00
|
|
|
cumulative_log += f"{model} has already been tested. Ignoring.\n\n"
|
2023-04-21 05:20:33 +02:00
|
|
|
yield cumulative_log
|
|
|
|
continue
|
|
|
|
|
|
|
|
if model != 'current model':
|
|
|
|
try:
|
2023-05-23 06:54:52 +02:00
|
|
|
yield cumulative_log + f"Loading {model}...\n\n"
|
2023-04-21 05:20:33 +02:00
|
|
|
model_settings = get_model_specific_settings(model)
|
|
|
|
shared.settings.update(model_settings) # hijacking the interface defaults
|
|
|
|
update_model_parameters(model_settings) # hijacking the command-line arguments
|
|
|
|
shared.model_name = model
|
|
|
|
unload_model()
|
|
|
|
shared.model, shared.tokenizer = load_model(shared.model_name)
|
|
|
|
except:
|
2023-05-23 06:54:52 +02:00
|
|
|
cumulative_log += f"Failed to load {model}. Moving on.\n\n"
|
2023-04-21 05:20:33 +02:00
|
|
|
yield cumulative_log
|
|
|
|
continue
|
|
|
|
|
2023-05-25 20:06:22 +02:00
|
|
|
cumulative_log += f"Processing {shared.model_name}...\n\n"
|
2023-05-23 06:54:52 +02:00
|
|
|
yield cumulative_log + "Tokenizing the input dataset...\n\n"
|
2023-04-21 05:20:33 +02:00
|
|
|
encodings = encode(text, add_special_tokens=False)
|
|
|
|
seq_len = encodings.shape[1]
|
2023-05-29 18:31:17 +02:00
|
|
|
if _max_length:
|
|
|
|
max_length = _max_length
|
|
|
|
elif hasattr(shared.model.config, 'max_position_embeddings'):
|
|
|
|
max_length = shared.model.config.max_position_embeddings
|
|
|
|
else:
|
|
|
|
max_length = 2048
|
2023-05-29 18:28:25 +02:00
|
|
|
|
2023-04-21 05:20:33 +02:00
|
|
|
nlls = []
|
|
|
|
prev_end_loc = 0
|
|
|
|
for begin_loc in tqdm(range(0, seq_len, stride)):
|
|
|
|
yield cumulative_log + f"Evaluating... {100*begin_loc/seq_len:.2f}%"
|
|
|
|
end_loc = min(begin_loc + max_length, seq_len)
|
|
|
|
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
|
|
|
|
input_ids = encodings[:, begin_loc:end_loc]
|
|
|
|
target_ids = input_ids.clone()
|
|
|
|
target_ids[:, :-trg_len] = -100
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
outputs = shared.model(input_ids, labels=target_ids)
|
|
|
|
|
|
|
|
# loss is calculated using CrossEntropyLoss which averages over valid labels
|
|
|
|
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
|
|
|
|
# to the left by 1.
|
|
|
|
neg_log_likelihood = outputs.loss
|
|
|
|
|
|
|
|
nlls.append(neg_log_likelihood)
|
|
|
|
|
|
|
|
prev_end_loc = end_loc
|
|
|
|
if end_loc == seq_len:
|
|
|
|
break
|
|
|
|
|
|
|
|
ppl = torch.exp(torch.stack(nlls).mean())
|
|
|
|
add_entry_to_past_evaluations(float(ppl), shared.model_name, input_dataset, stride, _max_length)
|
|
|
|
save_past_evaluations(past_evaluations)
|
2023-05-25 20:06:22 +02:00
|
|
|
cumulative_log += f"The perplexity for {shared.model_name} is: {float(ppl)}\n\n"
|
2023-04-21 05:20:33 +02:00
|
|
|
yield cumulative_log
|
|
|
|
|
|
|
|
|
|
|
|
def add_entry_to_past_evaluations(perplexity, model, dataset, stride, max_length):
|
|
|
|
global past_evaluations
|
|
|
|
entry = {
|
|
|
|
'Model': model,
|
|
|
|
'LoRAs': ', '.join(shared.lora_names) or '-',
|
|
|
|
'Dataset': dataset,
|
|
|
|
'Perplexity': perplexity,
|
|
|
|
'stride': str(stride),
|
|
|
|
'max_length': str(max_length),
|
|
|
|
'Date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
|
'Comment': ''
|
|
|
|
}
|
|
|
|
past_evaluations = pd.concat([past_evaluations, pd.DataFrame([entry])], ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
def is_in_past_evaluations(model, dataset, stride, max_length):
|
|
|
|
entries = past_evaluations[(past_evaluations['Model'] == model) &
|
|
|
|
(past_evaluations['Dataset'] == dataset) &
|
|
|
|
(past_evaluations['max_length'] == str(max_length)) &
|
|
|
|
(past_evaluations['stride'] == str(stride))]
|
|
|
|
|
|
|
|
if entries.shape[0] > 0:
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def generate_markdown_table():
|
|
|
|
sorted_df = past_evaluations.sort_values(by=['Dataset', 'stride', 'Perplexity', 'Date'])
|
|
|
|
return sorted_df
|