2023-03-16 21:35:53 -03:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-03-25 01:18:32 -03:00
|
|
|
import torch
|
2023-03-29 22:50:58 -03:00
|
|
|
from peft import PeftModel
|
2023-03-25 01:18:32 -03:00
|
|
|
|
2023-03-16 21:35:53 -03:00
|
|
|
import modules.shared as shared
|
|
|
|
from modules.models import load_model
|
2023-03-23 21:56:26 -03:00
|
|
|
from modules.text_generation import clear_torch_cache
|
2023-03-16 21:35:53 -03:00
|
|
|
|
|
|
|
|
2023-03-23 21:56:26 -03:00
|
|
|
def reload_model():
|
|
|
|
shared.model = shared.tokenizer = None
|
|
|
|
clear_torch_cache()
|
|
|
|
shared.model, shared.tokenizer = load_model(shared.model_name)
|
|
|
|
|
2023-03-16 21:35:53 -03:00
|
|
|
def add_lora_to_model(lora_name):
|
|
|
|
|
2023-03-23 22:02:09 -03:00
|
|
|
# If a LoRA had been previously loaded, or if we want
|
|
|
|
# to unload a LoRA, reload the model
|
2023-03-27 00:04:43 -03:00
|
|
|
if shared.lora_name not in ['None', ''] or lora_name in ['None', '']:
|
2023-03-23 22:02:09 -03:00
|
|
|
reload_model()
|
|
|
|
shared.lora_name = lora_name
|
2023-03-23 21:56:26 -03:00
|
|
|
|
2023-03-27 00:04:43 -03:00
|
|
|
if lora_name not in ['None', '']:
|
2023-03-17 11:39:48 -03:00
|
|
|
print(f"Adding the LoRA {lora_name} to the model...")
|
2023-03-17 17:45:28 -03:00
|
|
|
params = {}
|
2023-03-23 16:49:41 -03:00
|
|
|
if not shared.args.cpu:
|
2023-03-23 00:55:33 -03:00
|
|
|
params['dtype'] = shared.model.dtype
|
2023-03-23 16:49:41 -03:00
|
|
|
if hasattr(shared.model, "hf_device_map"):
|
|
|
|
params['device_map'] = {"base_model.model."+k: v for k, v in shared.model.hf_device_map.items()}
|
|
|
|
elif shared.args.load_in_8bit:
|
|
|
|
params['device_map'] = {'': 0}
|
2023-03-23 00:55:33 -03:00
|
|
|
|
2023-03-24 17:30:18 -07:00
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_name}"), **params)
|
2023-03-23 01:05:13 -03:00
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu:
|
2023-03-23 00:55:33 -03:00
|
|
|
shared.model.half()
|
2023-03-23 16:49:41 -03:00
|
|
|
if not hasattr(shared.model, "hf_device_map"):
|
2023-03-25 01:18:32 -03:00
|
|
|
if torch.has_mps:
|
|
|
|
device = torch.device('mps')
|
|
|
|
shared.model = shared.model.to(device)
|
|
|
|
else:
|
|
|
|
shared.model = shared.model.cuda()
|