2023-04-16 23:26:52 -03:00
|
|
|
# Copied from https://github.com/johnsmith0031/alpaca_lora_4bit
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
sys.path.insert(0, str(Path("repositories/alpaca_lora_4bit")))
|
|
|
|
|
|
|
|
import autograd_4bit
|
2023-04-25 21:20:26 -03:00
|
|
|
from amp_wrapper import AMPWrapper
|
2023-04-16 23:26:52 -03:00
|
|
|
from autograd_4bit import (Autograd4bitQuantLinear,
|
|
|
|
load_llama_model_4bit_low_ram)
|
|
|
|
from monkeypatch.peft_tuners_lora_monkey_patch import (
|
|
|
|
Linear4bitLt, replace_peft_model_with_gptq_lora_model)
|
|
|
|
|
|
|
|
from modules import shared
|
|
|
|
from modules.GPTQ_loader import find_quantized_model_file
|
|
|
|
|
|
|
|
replace_peft_model_with_gptq_lora_model()
|
|
|
|
|
|
|
|
def load_model_llama(model_name):
|
|
|
|
config_path = str(Path(f'{shared.args.model_dir}/{model_name}'))
|
|
|
|
model_path = str(find_quantized_model_file(model_name))
|
|
|
|
model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=shared.args.groupsize, is_v1_model=False)
|
|
|
|
for n, m in model.named_modules():
|
|
|
|
if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
|
|
|
|
if m.is_v1_model:
|
|
|
|
m.zeros = m.zeros.half()
|
|
|
|
m.scales = m.scales.half()
|
|
|
|
m.bias = m.bias.half()
|
2023-04-25 23:18:11 -03:00
|
|
|
|
2023-04-16 23:26:52 -03:00
|
|
|
autograd_4bit.use_new = True
|
|
|
|
autograd_4bit.auto_switch = True
|
|
|
|
|
2023-04-25 21:20:26 -03:00
|
|
|
model.half()
|
|
|
|
wrapper = AMPWrapper(model)
|
|
|
|
wrapper.apply_generate()
|
|
|
|
|
2023-04-16 23:26:52 -03:00
|
|
|
return model, tokenizer
|