text-generation-webui/extensions/superboogav2/benchmark.py

73 lines
2.7 KiB
Python
Raw Normal View History

2023-09-27 02:30:19 +02:00
"""
This module implements a benchmark function to evaluate the performance of the embedding pipeline. It expects a configuration JSON file. It must have questions and expected retrieved text.
For each question, it's essential to have variants of that question. Language is fluid and each person might have their own spin on how they may ask it.
At the end, it will save the results inside a benchmark_{sysdate}.txt file in the main directory.
The benchmark function will return the score as an integer.
"""
import datetime
import json
import os
from pathlib import Path
from .data_processor import preprocess_text, process_and_add_to_collector
2023-09-27 02:30:19 +02:00
from .parameters import get_chunk_count, get_max_token_count
from .utils import create_metadata_source
2023-09-27 02:30:19 +02:00
def benchmark(config_path, collector):
# Get the current system date
sysdate = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"benchmark_{sysdate}.txt"
2023-09-27 02:30:19 +02:00
# Open the log file in append mode
with open(filename, 'a') as log:
with open(config_path, 'r') as f:
data = json.load(f)
2023-09-27 02:30:19 +02:00
total_points = 0
max_points = 0
for item in data:
filepath = item["text"]
corpus = ""
# Check if the file exists
if os.path.isfile(Path(filepath)):
# Open the file and read its content
with open(Path(filepath), 'r') as file:
corpus = file.read()
process_and_add_to_collector(corpus, collector, True, create_metadata_source('benchmark'))
else:
raise f'Cannot find specified file {filepath}.'
for question_group in item["questions"]:
question_variants = question_group["question_variants"]
criteria = question_group["criteria"]
2023-09-27 02:30:19 +02:00
for q in question_variants:
max_points += len(criteria)
processed_text = preprocess_text(q)
# Get the most similar chunks
results = collector.get_sorted_by_dist(processed_text, n_results=get_chunk_count(), max_token_count=get_max_token_count())
points = 0
2023-09-27 02:30:19 +02:00
for c in criteria:
for p in results:
if c in p:
points += 1
total_points += 1
break
info = f"The question '{q}' scored {points}/{len(criteria)} points."
print(info, file=log)
print('\n---\n', file=log)
print(f'##Total points:\n\n{total_points}/{max_points}', file=log)
return total_points, max_points