text-generation-webui/modules/sampler_hijack.py

661 lines
27 KiB
Python
Raw Normal View History

import json
import math
import pprint
import random
import torch
import transformers
from transformers import LogitsWarper
2023-06-25 01:44:36 -03:00
from transformers.generation.logits_process import (
LogitNormalization,
LogitsProcessor,
LogitsProcessorList
2023-06-25 01:44:36 -03:00
)
from modules import shared
from modules.logging_colors import logger
from modules.models import get_device
global_scores = None
2023-11-04 13:09:07 -03:00
class TemperatureLogitsWarperCustom(LogitsWarper):
'''
A copy of the original Transformers temperature logits warper.
'''
def __init__(self, temperature: float):
if not isinstance(temperature, float) or not (temperature > 0):
except_msg = (
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
"scores will be invalid."
)
if isinstance(temperature, float) and temperature == 0.0:
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
raise ValueError(except_msg)
self.temperature = temperature
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores / self.temperature
return scores
class DynamicTemperatureLogitsWarper(LogitsWarper):
'''
Dynamic temperature.
'''
def __init__(self, dynatemp_low: float, dynatemp_high: float, dynatemp_exponent: float):
self.dynatemp_low = dynatemp_low
self.dynatemp_high = dynatemp_high
self.dynatemp_exponent = dynatemp_exponent
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
min_temp = self.dynatemp_low
max_temp = self.dynatemp_high
exponent_val = self.dynatemp_exponent
# Convert logits to probabilities
probs = torch.softmax(scores, dim=-1)
# Calculate entropy of the softmax probabilities
entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum()
# Guard against future possible division by zero
entropy = max(entropy, torch.tensor(1e-10)) # Ensures entropy is slightly greater than 0
# Any logits which are not -Infinity will be considered for calculating max entropy.
num_valid_tokens = torch.sum(scores > -float('inf')).item()
# Now, calculate the max entropy by using only the valid tokens' count
max_entropy = math.log(num_valid_tokens)
# Guard against future possible division by zero
max_entropy = max_entropy if max_entropy > 0.0 else 1e-10
# Normalize the entropy
normalized_entropy = entropy / max_entropy
# Map the normalized entropy to the desired temperature range using the power function
dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val))
# Apply the dynamically calculated temperature scaling
scores = scores / dyn_temp
# print("----------------------\nTemperature from generation_config:", self.temperature)
# print("min_temp:", min_temp)
# print("max_temp:", max_temp)
# print("Entropy:", entropy.item())
# print("Max Possible Entropy considering valid tokens only:", max_entropy)
# print("Normalized Entropy:", normalized_entropy.item())
# print("Dynamic Temperature (dyn_temp):", dyn_temp.item())
# print("----------------------")
# max_prob_token_id = torch.argmax(scores, dim=-1) # Get the token ID with the highest probability
# max_prob_token = shared.tokenizer.convert_ids_to_tokens(int(max_prob_token_id)) # Convert ID to token
# print("--- T=", float(dyn_temp), "token=", max_prob_token, "min=", min_temp, "max=", max_temp, "exponent=", exponent_val)
return scores
class QuadraticSamplingLogitsWarper(LogitsWarper):
'''
Quadratic sampling with smoothing factor and smoothing curve parameters.
'''
def __init__(self, smoothing_factor, smoothing_curve):
self.smoothing_factor = smoothing_factor
self.smoothing_curve = smoothing_curve
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Compute necessary values
max_logit = scores.max()
diff = scores - max_logit
k = (3 - self.smoothing_curve) / 2
s = (self.smoothing_curve - 1) / 2
# Apply transformation to non-negative infinity values
transformed_logits = torch.where(
scores != float('-inf'),
-(k * self.smoothing_factor * diff**2) + (s * self.smoothing_factor * diff**3) + max_logit,
scores
)
return transformed_logits
class TailFreeLogitsWarper(LogitsWarper):
def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
tfs = float(tfs)
if tfs < 0 or tfs > 1.0:
raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}")
self.tfs = tfs
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
# Compute second derivative normalized CDF
d2 = probs.diff().diff().abs()
normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
normalized_d2_cdf = normalized_d2.cumsum(dim=-1)
# Remove tokens with CDF value above the threshold (token with 0 are kept)
sorted_indices_to_remove = normalized_d2_cdf > self.tfs
# Centre the distribution around the cutoff as in the original implementation of the algorithm
sorted_indices_to_remove = torch.cat(
(
torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
sorted_indices_to_remove,
torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
),
dim=-1,
)
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopALogitsWarper(LogitsWarper):
def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_a = float(top_a)
if top_a < 0 or top_a > 1.0:
raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}")
self.top_a = top_a
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
# Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept)
probs_max = probs[..., 0, None]
sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
# Exclude Top Choices (XTC)
class XTCLogitsWarper(LogitsWarper):
def __init__(self, threshold: float, probability: float, filter_value: float = -float("Inf")):
self.threshold = threshold
self.probability = probability
self.filter_value = filter_value
self.special_token_ids = [
shared.tokenizer.encode("\n")[-1],
]
if shared.tokenizer.eos_token_id is not None:
self.special_token_ids.append(shared.tokenizer.eos_token_id)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# `random` returns values in the half-open range [0, 1), so setting `probability`
# to 0 means the sampler never takes action, while setting it to 1 means the sampler
# always takes action.
#
# Note that while XTC is most intuitively described as "if multiple tokens meet
# the threshold, then with probability...", reversing the two conditions is logically
# equivalent, and improves performance because processing can immediately be stopped
# if the random check fails.
if random.random() >= self.probability:
return scores
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
sorted_indices_to_remove = torch.full_like(probs, False, dtype=torch.bool)
# This operation sets exactly those indices to `True` for which the next index has
# probability above the threshold. Since `probs` is sorted, those are the indices
# of all tokens that meet the threshold, *except* the least probable one.
sorted_indices_to_remove[..., :-1] = probs[..., 1:] >= self.threshold
# Convert sorted_indices_to_remove to the original indices
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
# If newline or EOS tokens would be removed, return the original scores
if indices_to_remove[:, self.special_token_ids].any():
return scores
# Otherwise, remove tokens with the mask
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class DRYLogitsProcessor(LogitsProcessor):
def __init__(self, multiplier: float, base: float, allowed_length: int, sequence_breakers: set[int], _range: int):
self.multiplier = multiplier
self.base = base
self.allowed_length = allowed_length
self.sequence_breakers = sequence_breakers
self._range = _range
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if self._range > 0:
input_ids = input_ids[:, -self._range:]
for input_ids_row, scores_row in zip(input_ids, scores):
2024-06-13 05:39:11 +03:00
# Use normal Python data types for improved performance
input_ids = input_ids_row.tolist()
2024-06-13 05:39:11 +03:00
last_token = input_ids[-1]
if last_token in self.sequence_breakers:
continue
# Exclude the last token as it always matches.
2024-06-13 05:39:11 +03:00
match_indices = []
for idx, val in enumerate(input_ids[:-1]):
if val == last_token:
match_indices.append(idx)
# Stores the maximum matching sequence length
# for each token immediately following the sequence in the input.
match_lengths = {}
for i in match_indices:
2024-06-13 05:39:11 +03:00
next_token = input_ids[i + 1]
if next_token in self.sequence_breakers:
continue
# We have already found that `last_token` matches at this index,
# so the match is at least of length 1.
match_length = 1
2024-06-13 05:39:11 +03:00
# Extend the match backwards (at most to 50 to prevent exponent overflow at penalty calculation) (this cap also improves performance on worst case)
while match_length < 50:
j = i - match_length
if j < 0:
# Start of input reached.
break
2024-06-13 05:39:11 +03:00
previous_token = input_ids[-(match_length + 1)]
if input_ids[j] != previous_token:
# Start of match reached.
break
if previous_token in self.sequence_breakers:
# Sequence-breaking token reached.
break
match_length += 1
if next_token in match_lengths:
match_lengths[next_token] = max(match_length, match_lengths[next_token])
else:
match_lengths[next_token] = match_length
# Apply penalties.
for token, match_length in match_lengths.items():
if match_length >= self.allowed_length:
penalty = self.multiplier * self.base ** (match_length - self.allowed_length)
scores_row[token] -= penalty
return scores
class MirostatLogitsWarper(LogitsWarper):
def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if mirostat_mode not in [2]:
raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}")
self.mirostat_mode = mirostat_mode
self.mirostat_eta = mirostat_eta
self.mirostat_tau = mirostat_tau
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
self.mu = 2 * self.mirostat_tau
self.e = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
logits = scores[0]
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() # candidates
# Truncate the words with surprise values greater than mu
for i, candidate in enumerate(prob_original):
if candidate > 0 and -math.log2(candidate) > self.mu:
if (i == 0):
sorted_logits = sorted_logits[:1]
else:
sorted_logits = sorted_logits[:i]
break
# Normalize the probabilities of the remaining words
prob_topk = torch.softmax(sorted_logits, dim=0)
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
device = get_device()
if device:
prob_topk = prob_topk.to(device)
prev_i = prev_i.to(device)
observed_surprise = -math.log2(prob_topk[prev_i])
self.e = observed_surprise - self.mirostat_tau
# Update mu using the learning rate and error
self.mu -= self.mirostat_eta * self.e
sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool)
sorted_indices_to_remove[prev_i] = False
indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0))
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class SpyLogitsWarper(LogitsWarper):
def __init__(self):
pass
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
global global_scores
global_scores = scores
return scores
class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
def __init__(self, penalty: float, _range: int):
if not (penalty > 0):
raise ValueError(f"`penalty` has to be strictly positive, but is {penalty}")
self.penalty = penalty
self._range = _range
def apply_repetition_penalty(self, input_ids_row, scores_row):
unique_ids = torch.unique(input_ids_row)
score = torch.gather(scores_row, 0, unique_ids)
# Apply multiplicative repetition penalty
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores_row.scatter_(0, unique_ids, score)
return scores_row
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
input_ids = input_ids[:, -self._range:]
for input_ids_row, scores_row in zip(input_ids, scores):
scores_row = self.apply_repetition_penalty(input_ids_row, scores_row)
return scores
class PresencePenaltyLogitsProcessor(LogitsProcessor):
def __init__(self, presence_penalty: float, _range: int):
self.presence_penalty = presence_penalty
self._range = _range
def apply_presence_penalty(self, input_ids_row, scores_row):
unique_ids, counts = torch.unique(input_ids_row, return_counts=True)
# Apply presence penalty
raw_presence_penalty = (counts > 0).to(scores_row.dtype)
presence_penalty = raw_presence_penalty * self.presence_penalty
scores_row.scatter_add_(0, unique_ids, -presence_penalty)
return scores_row
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
input_ids = input_ids[:, -self._range:]
for input_ids_row, scores_row in zip(input_ids, scores):
scores_row = self.apply_presence_penalty(input_ids_row, scores_row)
return scores
class FrequencyPenaltyLogitsProcessor(LogitsProcessor):
def __init__(self, frequency_penalty: float, _range: int):
self.frequency_penalty = frequency_penalty
self._range = _range
def apply_frequency_penalty(self, input_ids_row, scores_row):
unique_ids, counts = torch.unique(input_ids_row, return_counts=True)
# Apply frequency penalty
raw_frequency_penalty = counts.to(scores_row.dtype)
frequency_penalty = raw_frequency_penalty * self.frequency_penalty
scores_row.scatter_add_(0, unique_ids, -frequency_penalty)
return scores_row
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
input_ids = input_ids[:, -self._range:]
for input_ids_row, scores_row in zip(input_ids, scores):
scores_row = self.apply_frequency_penalty(input_ids_row, scores_row)
return scores
def get_logits_processor_patch(self, **kwargs):
generation_config = kwargs['generation_config']
# Parameter sanitization
if isinstance(generation_config.temperature, int):
generation_config.temperature = float(generation_config.temperature) # Must be float
# Get the original warpers
warpers = self._get_logits_processor_old(**kwargs)
for i in range(len(warpers) - 1, -1, -1):
# Replace temperature with our modified class.
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
warpers[i] = TemperatureLogitsWarperCustom(
generation_config.temperature,
)
# Stuff we don't need
elif warpers[i].__class__.__name__ in ['RepetitionPenaltyLogitsProcessor']:
del warpers[i]
# Add custom warpers
warpers_to_add = LogitsProcessorList()
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
warpers_to_add.append(
RepetitionPenaltyLogitsProcessorWithRange(
penalty=generation_config.repetition_penalty,
_range=generation_config.repetition_penalty_range
)
)
if generation_config.presence_penalty is not None and generation_config.presence_penalty != 0.0:
warpers_to_add.append(
PresencePenaltyLogitsProcessor(
presence_penalty=generation_config.presence_penalty,
_range=generation_config.repetition_penalty_range
)
)
if generation_config.frequency_penalty is not None and generation_config.frequency_penalty != 0.0:
warpers_to_add.append(
FrequencyPenaltyLogitsProcessor(
frequency_penalty=generation_config.frequency_penalty,
_range=generation_config.repetition_penalty_range
)
)
if generation_config.dry_multiplier is not None and generation_config.dry_multiplier > 0.0:
dry_sequence_breakers = generation_config.dry_sequence_breakers
# Support both JSON array notation and comma-separated strings.
if not dry_sequence_breakers.startswith("["):
dry_sequence_breakers = "[" + dry_sequence_breakers + "]"
sequence_breaker_strings = json.loads(dry_sequence_breakers)
# Prefix with 'a' to get the correct encoding of the token at the end of a text.
sequence_breakers = {
shared.tokenizer.encode(f'a{s}')[-1] for s in sequence_breaker_strings
}
warpers.append(
DRYLogitsProcessor(
multiplier=generation_config.dry_multiplier,
base=generation_config.dry_base,
allowed_length=generation_config.dry_allowed_length,
sequence_breakers=sequence_breakers,
_range=generation_config.repetition_penalty_range,
)
)
if generation_config.tfs is not None and 0.0 <= generation_config.tfs < 1.0:
warpers_to_add.append(
TailFreeLogitsWarper(
tfs=generation_config.tfs,
min_tokens_to_keep=min_tokens_to_keep
)
)
if generation_config.top_a is not None and 0.0 < generation_config.top_a <= 1.0:
warpers_to_add.append(
TopALogitsWarper(
top_a=generation_config.top_a,
min_tokens_to_keep=min_tokens_to_keep
)
)
if generation_config.xtc_probability is not None and generation_config.xtc_probability > 0:
warpers_to_add.append(
XTCLogitsWarper(
threshold=generation_config.xtc_threshold,
probability=generation_config.xtc_probability,
)
)
if generation_config.dynamic_temperature:
warpers_to_add.append(
DynamicTemperatureLogitsWarper(
dynatemp_low=generation_config.dynatemp_low,
dynatemp_high=generation_config.dynatemp_high,
dynatemp_exponent=generation_config.dynatemp_exponent,
)
)
if generation_config.smoothing_factor > 0:
warpers_to_add.append(
QuadraticSamplingLogitsWarper(
smoothing_factor=generation_config.smoothing_factor,
smoothing_curve=generation_config.smoothing_curve
)
)
if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2:
warpers_to_add.append(
MirostatLogitsWarper(
mirostat_mode=generation_config.mirostat_mode,
mirostat_eta=generation_config.mirostat_eta,
mirostat_tau=generation_config.mirostat_tau,
min_tokens_to_keep=min_tokens_to_keep
)
)
2023-11-04 13:09:07 -03:00
if len(warpers) > 0 and isinstance(warpers[-1], LogitNormalization):
normalize = warpers.pop(-1)
else:
2023-11-04 13:09:07 -03:00
normalize = None
warpers += warpers_to_add
# Sort the samplers.
sampler_priority = generation_config.sampler_priority
# Handle temperature_last
if generation_config.temperature_last:
for param_name in ['temperature', 'dynamic_temperature', 'quadratic_sampling']:
if param_name in sampler_priority:
index = sampler_priority.index(param_name)
sampler_priority.append(sampler_priority.pop(index))
else:
sampler_priority.append(param_name)
class_name_to_nickname = {
'DynamicTemperatureLogitsWarper': 'dynamic_temperature',
'EpsilonLogitsWarper': 'epsilon_cutoff',
'EtaLogitsWarper': 'eta_cutoff',
'MinPLogitsWarper': 'min_p',
'MirostatLogitsWarper': 'mirostat',
'QuadraticSamplingLogitsWarper': 'quadratic_sampling',
'TailFreeLogitsWarper': 'tfs',
'TemperatureLogitsWarperCustom': 'temperature',
'TopALogitsWarper': 'top_a',
'TopKLogitsWarper': 'top_k',
'TopPLogitsWarper': 'top_p',
'TypicalLogitsWarper': 'typical_p',
'XTCLogitsWarper': 'xtc',
'RepetitionPenaltyLogitsProcessorWithRange': 'repetition_penalty',
'PresencePenaltyLogitsProcessor': 'presence_penalty',
'FrequencyPenaltyLogitsProcessor': 'frequency_penalty',
2024-09-27 15:40:48 -07:00
'DRYLogitsProcessor': 'dry',
'EncoderRepetitionPenaltyLogitsProcessor': 'encoder_repetition_penalty',
'NoRepeatNGramLogitsProcessor': 'no_repeat_ngram',
}
def custom_sort_key(obj):
class_name = obj.__class__.__name__
# Return -1 if class_name is not mapped
if class_name not in class_name_to_nickname or class_name_to_nickname[class_name] not in sampler_priority:
return -1
return sampler_priority.index(class_name_to_nickname[class_name])
# Sort the list using the custom key function
warpers = sorted(warpers, key=custom_sort_key)
if shared.args.verbose:
logger.info("WARPERS=")
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint([x.__class__.__name__ for x in warpers])
2024-02-06 07:09:21 -08:00
print()
2023-11-04 13:09:07 -03:00
if normalize is not None:
warpers.append(normalize)
warpers.append(SpyLogitsWarper())
warpers = LogitsProcessorList(warpers)
return warpers
def generation_config_init_patch(self, **kwargs):
self.__init___old(**kwargs)
2023-11-03 08:25:22 -07:00
self.min_p = kwargs.pop("min_p", 0.0)
self.dynamic_temperature = kwargs.pop("dynamic_temperature", False)
self.dynatemp_low = kwargs.pop("dynatemp_low", 1)
self.dynatemp_high = kwargs.pop("dynatemp_high", 1)
self.dynatemp_exponent = kwargs.pop("dynatemp_exponent", 1)
self.smoothing_factor = kwargs.pop("smoothing_factor", 0.0)
self.smoothing_curve = kwargs.pop("smoothing_curve", 1.0)
self.tfs = kwargs.pop("tfs", 1.0)
self.top_a = kwargs.pop("top_a", 0.0)
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1)
self.mirostat_tau = kwargs.pop("mirostat_tau", 5)
self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0)
self.presence_penalty = kwargs.pop("presence_penalty", 0)
self.frequency_penalty = kwargs.pop("frequency_penalty", 0)
self.dry_multiplier = kwargs.pop("dry_multiplier", 0.0)
self.dry_base = kwargs.pop("dry_base", 1.75)
self.dry_allowed_length = kwargs.pop("dry_allowed_length", 2)
self.dry_sequence_breakers = kwargs.pop("dry_sequence_breakers", '"\\n", ":", "\\"", "*"')
self.xtc_threshold = kwargs.pop("xtc_threshold", 0.1)
self.xtc_probability = kwargs.pop("xtc_probability", 0)
2023-11-04 13:09:07 -03:00
self.temperature_last = kwargs.pop("temperature_last", False)
self.sampler_priority = kwargs.pop("sampler_priority", ['repetition_penalty', 'presence_penalty', 'frequency_penalty', 'dry', 'temperature', 'dynamic_temperature', 'quadratic_sampling', 'top_k', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'min_p', 'mirostat', 'xtc', 'encoder_repetition_penalty', 'no_repeat_ngram'])
def hijack_samplers():
transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor
transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch
transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__
transformers.GenerationConfig.__init__ = generation_config_init_patch