mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-12 05:17:40 +01:00
70 lines
2.1 KiB
Python
70 lines
2.1 KiB
Python
|
import time
|
||
|
import numpy as np
|
||
|
from numpy.linalg import norm
|
||
|
from extensions.openai.embeddings import get_embeddings_model
|
||
|
|
||
|
|
||
|
moderations_disabled = False # return 0/false
|
||
|
category_embeddings = None
|
||
|
antonym_embeddings = None
|
||
|
categories = [ "sexual", "hate", "harassment", "self-harm", "sexual/minors", "hate/threatening", "violence/graphic", "self-harm/intent", "self-harm/instructions", "harassment/threatening", "violence" ]
|
||
|
flag_threshold = 0.5
|
||
|
|
||
|
|
||
|
def get_category_embeddings():
|
||
|
global category_embeddings, categories
|
||
|
if category_embeddings is None:
|
||
|
embeddings = get_embeddings_model().encode(categories).tolist()
|
||
|
category_embeddings = dict(zip(categories, embeddings))
|
||
|
|
||
|
return category_embeddings
|
||
|
|
||
|
|
||
|
def cosine_similarity(a, b):
|
||
|
return np.dot(a, b) / (norm(a) * norm(b))
|
||
|
|
||
|
|
||
|
# seems most openai like with all-mpnet-base-v2
|
||
|
def mod_score(a, b):
|
||
|
return 2.0 * np.dot(a, b)
|
||
|
|
||
|
|
||
|
def moderations(input):
|
||
|
global category_embeddings, categories, flag_threshold, moderations_disabled
|
||
|
results = {
|
||
|
"id": f"modr-{int(time.time()*1e9)}",
|
||
|
"model": "text-moderation-001",
|
||
|
"results": [],
|
||
|
}
|
||
|
|
||
|
embeddings_model = get_embeddings_model()
|
||
|
if not embeddings_model or moderations_disabled:
|
||
|
results['results'] = [{
|
||
|
'categories': dict([ (C, False) for C in categories]),
|
||
|
'category_scores': dict([ (C, 0.0) for C in categories]),
|
||
|
'flagged': False,
|
||
|
}]
|
||
|
return results
|
||
|
|
||
|
category_embeddings = get_category_embeddings()
|
||
|
|
||
|
|
||
|
# input, string or array
|
||
|
if isinstance(input, str):
|
||
|
input = [input]
|
||
|
|
||
|
for in_str in input:
|
||
|
for ine in embeddings_model.encode([in_str]).tolist():
|
||
|
category_scores = dict([ (C, mod_score(category_embeddings[C], ine)) for C in categories ])
|
||
|
category_flags = dict([ (C, bool(category_scores[C] > flag_threshold)) for C in categories ])
|
||
|
flagged = any(category_flags.values())
|
||
|
|
||
|
results['results'].extend([{
|
||
|
'flagged': flagged,
|
||
|
'categories': category_flags,
|
||
|
'category_scores': category_scores,
|
||
|
}])
|
||
|
|
||
|
print(results)
|
||
|
|
||
|
return results
|